Draft: June 23, 2016 2:45pm # 2016 Progress Report of the Parties | U.S. spelling is used throughout this report except when referring to Canadian titles. | Units are provided | |--|--------------------| | in both metric and U.S. customary units. | | ISSN ... Cat. No.: ... © info... [TABLE OF CONTENTS] [TABLES/FIGURES] #### **EXECUTIVE SUMMARY** The Great Lakes Water Quality Agreement of 2012 ("Agreement" or "GLWQA") included a new requirement that Canada the United States prepare a Progress Report of the Parties (Report) "to document <u>actions</u> relating to this Agreement". This reporting requirement added a measure of accountability to the Agreement, as the Report is to be provided to the public and the International Joint Commission. Consistent with that requirement, the Parties are pleased to release this first Progress Report of the Parties, documenting the actions taken since the Agreement took effect. #### "Operationalizing" the Agreement Even before the Agreement took formal effect in February of 2013, the Parties had already begun "operationalizing" the new Agreement. While largely administrative in nature, this time-consuming work was essential to creating and implementing the organizational structure required under the Agreement. The Great Lakes Executive Committee had to be called to order, Annex Subcommittees and their task teams had to be staffed and organized, activities had to be prioritized, policies debated, and responsibilities assigned. Further, given the cooperative approach that underpins the Agreement, these structural activities were not limited to the Parties; they required the very active participation of the Parties' many partners, including states and provinces and indigenous peoples on both sides of the border. Ultimately, as of the writing of this Report, the Parties can report that much of the necessary administrative and organizational work is finished. Consequently, in the upcoming triennial cycle of 2017-2019, the Parties will be able to concentrate more heavily on the implementation of substantive restoration and protection activities. #### Key Actions Completed Under the Agreement Notwithstanding the efforts needed to "operationalize" the 2012 Agreement, during the past three years the Parties were able to undertake and complete (with the assistance of their many partners) a host of actions in furtherance of the Agreement's purpose: restoring and maintaining the chemical, physical, and biological integrity of the waters of the Great Lakes. These actions will be described in detail in subsequent sections of this Report. However, some actions are especially noteworthy: - The Parties effectively implemented a new system, under Agreement Article 6(c), of providing notification to the Great Lakes Executive Committee members and observers, as well as other interested parties of planned activities that could lead to a pollution incident or that could have a significant cumulative impact on the waters of the Great Lakes; - The United States "delisted" the Presque Isle (Pennsylvania), Deer Lake (Michigan) and White Lake (Michigan) Areas of Concern, signifying that remedial actions were completed and elimination of environmental impairments was confirmed. In addition, all necessary remedial actions were completed at other AOCs: Nipigon Bay in Canada; and Sheboygan Harbor (Wisconsin), Waukegan Harbor (Wisconsin), Ashtabula (Ohio), and St. Clair (Michigan) in the United States. - The Parties developed a "Nearshore Framework", which provides a mechanism for undertaking a systematic, integrated and collective approach for assessing nearshore health and identifying and communicating cumulative impacts and stresses; - The Parties developed a Lakewide Action and Management Plan for Lake Superior; - The Parties identified eight chemicals as the first *Chemicals of Mutual Concern* so designated under the Agreement; - The Parties set phosphorus load reduction targets for the western and central basin of Lake Erie after extensive analysis of phosphorous sources and loads and have begun to develop Domestic Action Plans loads to achieve the 40% reduction; - The Parties significantly reduced the risk of the introduction of aquatic invasive species to the Great Lakes via ballast water discharges from saltwater vessels. Because of compatible ballast water exchange regulations between Canada and the United States and stringent binational enforcement, no new invasive species attributable to the ballast water of these ships has been reported in the Great Lakes since 2006. In addition, the Parties continue to prevent and address other discharges from vessels that potentially may impact the waters of the Great Lakes; - The Parties undertook a host of invasive species control and prevention measures (including the development and implementation of an AIS early detection and rapid response initiative) and no non-native species became established in the Great Lakes during the last three years. - The Parties oversaw the development and implementation of lakewide habitat and species protection and restoration conservation strategies (i.e., Biodiversity Conservation Strategies) for all five of the Great Lakes. - The Parties jointly developed a report on the relevant and available Great Lakes groundwater science entitled Groundwater Science relevant to the Great Lakes Water Quality Agreement: A Status Report; - A report entitled State of Climate Change Science in the Great Lakes Basin: A Focus on Climatological, Hydrologic and Ecological Effects was developed in 2015, which synthesizes the state of climate change impacts in the Great Lakes basin and identifies key knowledge gaps. - The Parties updated and revised the suite of ecosystem indicators used to report on the state of the Great Lakes to align the indicators to the General Objectives of the 2012 GLWQA; These highlighted actions, while significant, represent only the first concrete steps in restoring and protecting the waters of the Great Lakes under the 2012 Agreement. More importantly, they reflect the vigor with which the Parties intend to implement the Agreement over the next three years. #### **INTRODUCTION** The Great Lakes contain a significant portion of the world's freshwater, containing one fifth of global fresh surface water. The Great Lakes are immensely important to both Canada and the United States, environmentally, economically, and socially. The Canada-United States Great Lakes Water Quality Agreement ("GLWQA" or "Agreement") was first signed in 1972. Over the course of its more than forty-year history, the Agreement has served as an important mechanism for coordination of actions by Canada and the United States, working in cooperation with other levels of government, non-governmental organizations, industry, Indigenous peoples, and the public to address threats to Great Lakes water quality and ecosystem health. Over the last 45 years, Canada and the United States have taken action to address many threats to Great Lakes water quality and ecosystem health. In many locations, water quality has greatly improved. Most notably, releases of many persistent toxic substances (for example, mercury, PCBs, dioxins and furans, as well as banned pesticides such as DDT) in the Great Lakes have been reduced by more than 90 percent. As a result, the frequency of deformities in colonial nesting birds, commonly seen in the 1970s, has now been significantly reduced. Sentinel species such as the Bald Eagle, once extirpated from the Great Lakes, now thrive along Great Lakes shorelines. The rapid recovery of a "dead" Lake Erie in the 1980s is another globally-known success story. In the decades leading up to the 1970s, loadings of nutrients, particularly phosphorus from municipal sewage treatment plants and other anthropogenic sources, visibly degraded Lake Erie. Stirred by public concern, governments responded with vigor to the problem in the 1960s and 1970s, resulting in measurable reductions in phosphorus inputs and a steep reduction in algal blooms. These controls represented an unprecedented success in producing environmental results through international cooperation. Despite these past successes, the lakes continue to face threats posed by nutrient discharges, releases of toxic substances, invasive species, loss of wetland and other habitat, climate change and other factors. Continued action is required to address these existing threats, and to address new threats as they are identified. In 2012, the GLWQA was once again amended and strengthened. The 2012 Agreement: 1) updates approaches to science and management; and 2) reaffirms existing commitments to restore degraded Areas of Concern, to address the threats posed by excess nutrients, chemicals of mutual concern, and discharges from vessels, and to undertake vital scientific coordination and research. In addition, the new Agreement includes <u>new</u> commitments to address other significant challenges to Great Lakes water quality, including threats from aquatic invasive species and climate change, as well as the loss of habitat and species. One of the new commitments made by Governments in the Agreement was to enhance accountability and reporting by, for the first time, requiring the production of a Progress Report of the Parties. In accordance with the GLWQA, the Progress Report of the Parties is to be prepared by Canada and the United States, in consultation with representatives of federal governments, state and provincial governments, tribal Governments, First Nations, Métis, municipal governments, watershed management agencies, and other local public agencies. The Progress Report of the Parties contains an overview of binational and domestic activities that have contributed to the achievement of GLWQA objectives. This document represents the first Progress Report of the Parties prepared under the 2012 Great
Lakes Water Quality Agreement. Subsequent Progress Report of the Parties will be issued every three years. Binational activities are coordinated through the Great Lakes Executive Committee. Following signing of the GLWQA in September of 2012, a significant amount of effort was devoted to the establishment of management processes and structures necessary to drive the Agreement's implementation. Annex Subcommittees and Task Teams have been created to engage a large and diverse group of organizations, institutions and experts in carrying out the necessary activities to support undertaking the commitments laid out in the Agreement. Within Canada, the principal mechanism for coordination of Great Lakes activities is the Canada-Ontario Agreement on Great Lakes Water Quality and Ecosystem Health, 2014 (COA), which entered into force in December, 2014. A series of Canada-Ontario Agreements date back over forty years and have provided a framework for cooperation and coordination between Ontario and Canada's activities to restore, protect and conserve Great Lakes water quality and ecosystem health, as well as identify joint priorities and actions to help deliver on commitments under the GLWQA. Within the United States the principal mechanism for coordination and implementation of Great Lakes activities is the Great Lakes Restoration Initiative (GLRI). GLRI was initiated in 2010 through a congressional appropriation of \$475,000,000 for Great Lakes restoration and protection work and the formation of an Interagency Task Force and Regional Working Group chaired by the United States Environmental Protection Agency. The Interagency Task Force and Regional Working Group consists of sixteen federal departments or agencies, which work closely together to: 1) identify Great Lakes restoration and protection priorities; 2) make project funding decisions, and 3) keep track of and report on project results. For those wishing additional information on Great Lakes activities, including how to get involved in helping to restore and protect the Great Lakes, additional information is available at the following websites: www.ec.gc.ca/greatlakes; href="https://www.ec.gc.ca/greatlakes">www.ec.gc.ca/gc.ca/greatlakes; www.ec.gc.c Figure 1 – The history of the Great Lakes Water Quality Agreement November 22, 1978 While reaffirming and building upon the 1972 GLWQA, the 1978 GLWQA introduced the ecosystem approach to the management of Great Lakes water quality. It also called for the virtual elimination of persistent toxic substances in the Great Lakes ecosystem by adopting a philosophy of "zero discharge" of inputs and established a list of toxic chemicals November 18, 1987 The 1987 GLWQA called for: 1) the adoption of ecosystem objectives for the lakes; 2) the development and implementation of Remedial Action Plans to restore significantly degraded areas around the Great Lakes identified as Areas of Concern; and 3) Lakewide Management Plans to address whole lake contamination by persistent toxic substances. The 1987 GLWQA was further broadened through new annexes addressing: non-point contaminant sources; contaminated sediment; airborne toxic substances; contaminated groundwater; and associated research and development. 1972 for priority action 1978 1983 1987 2012 April 15, 1972 Prime Minister Pierre Trudeau and President Richard Nixon sign the first Canada-United States Great Lakes Water Quality Agreement (GLWQA). The 1972 GLWQA committed Canada and the United States to restore and enhance water quality in the Great Lakes ecosystem and established basinwide water quality objectives and binational commitment on the design, implementation and monitoring of water quality programs. The focus of the 1972 GLWQA was on phosphorus loadings and visible pollution. October 16, 1983 A Phosphorus Load Reduction Supplement was added to Annex 3 of the 1978 GLWQA, outlining measures to reduce phosphorus loading throughout the basin. As a result, detailed plans to reduce phosphorus loading to receiving waters were developed and adopted by each jurisdiction in the basin. September 7, 2012 Canadian Minister of the Environment Peter Kent and United States Environmental Protection Agency Administrator Lisa Jackson sign the 2012 GLWQA. The 2012 GLWQA comprehensively addresses today's Great Lakes water quality issues: 1) modernizing provisions related to excessive algae growth, chemicals, pollution from ships, and scientific research; 2) incorporating new commitments to address significant challenges such as the degradation of the nearshore, the threat from aquatic invasive species and climate change, and the loss of habitat and species; and 3) strengthening provisions for governance, accountability, and engagement of government and nongovernment entities The 2012 Agreement is generally divided into two parts. The first part consists of thirteen Articles, which express the aspirations of the Parties, set forth the overall goals of the Agreement, and describe the "mechanics" of the Agreement. The second part of the Agreement consist of ten Annexes, each of which addresses a particular threat (e.g., invasive species, climate change) or provides specific direction on the implementation of the Agreement (e.g., Lakewide Action and Management Plans, Science). #### REPORTING AGAINST KEY COMMITMENTS FROM ARTICLES # Article 3: Progress in achieving General Objectives, Lake Ecosystem Objectives and Substance Objectives. - The 2012 GLWQA commits Canada and the United States to maintaining a set of comprehensive, science-based ecosystem indicators in order to be able to assess and report to the public on the state of the Great Lakes. Binational reporting on the State of the Great Lakes has been ongoing since 1994. Over the past three years the Parties have updated and revised the suite of ecosystem indicators used to report on the state of the Great Lakes to align the indicators to the General Objectives of the 2012 GLWQA. This allows the State of the Lakes indicators to be used to assess whether progress is being made in relation to accomplishing the objectives set out by Governments in the 2012 GLWQA. Information on the state of the Great Lakes will be presented at the Great Lakes Public Forum in October, 2016 for public review and comment. A final State of the Great Lakes report will be available in 2017. - The 2012 GLWQA also calls for the development of lake-specific ecosystem objectives, to serve as benchmarks against which to assess status and trends in ecosystem health. Work has begun on development of Lake Ecosystem Objectives for Lake Erie. Finalization of these objectives will include extensive consultation and engagement. Work to develop Lake Ecosystem Objectives for lakes Huron, Ontario, Michigan and Superior will follow. #### Article 5: Establishing the Great Lakes Executive Committee. - A Great Lakes Executive Committee (GLEC) was established to replace the former Binational Executive Committee. The GLEC has a significantly expanded membership including senior-level representatives from the Governments of Canada and United States, state and provincial governments, tribal governments, First Nations, Métis, municipal governments, watershed management agencies, and other local public agencies. The inaugural meeting of the GLEC was held on December 5-6, 2012 in Toronto, Ontario. The GLEC has met biannually since then, alternating meeting locations between Chicago, Illinois, and Toronto, Ontario. Summaries of the past GLEC meetings are available at binational.net (http://binational.net/category/mtg-ru/). - The GLEC provides a forum for GLEC members to share information and discuss issues relevant to the implementation of the Agreement. The meetings have been instrumental in coordinating the activities of departments, agencies, organizations and peoples represented in the GLEC membership. Meetings are open to the public, attracting attendance from observers including the Province of Quebec, the International Joint Commission, the Great Lakes Commission, the Great Lakes Fishery Commission, environmental non-governmental organizations, industry representatives and members of the interested public all of which have provided significant contributions and advice to the GLEC. - The GLEC has created a formal subcommittee structure to engage member organizations and others in working binationally to plan and coordinate actions to implement the ten Annexes contained in the 2012 GLWQA. Annex-specific subcommittees are co-led by a Canadian and United States representative. Extended subcommittees have been created to advise and provide input to the Annex Co-Leads and to the Annex Subcommittee; while Task Teams have been formed to perform specific tasks required to meet the Annex's commitments. The Annex Subcommittee structure has allowed a significant amount of work to be accomplished over the first three years of the implementation of the 2012 GLWQA, engaging a large number of organizations and individuals; this work will be discussed in subsequent chapters of this report. Figure 2 depicts the Annex Subcommittees, Extended Subcommittees, and the Task Teams that existed for each Annex between 2013 and 2016. Figure 2 – Great Lakes Water Quality Agreement Implementation at a Glance (2013-2016) The Subcommittee, consisting of representatives from GLEC member agencies and organizations, assists the Annex Co-Leads in coordinating and undertaking activities in support of meeting commitments of the Annexes. An Extended Subcommittee, consisting of representatives from GLEC member agencies and organizations and other entities, advises and provides input to the Annex Co-Leads and Subcommittee. A Task Team, consisting of representatives from GLEC member agencies and organizations and others entities, may be established to perform specific tasks over a specified period of time, as required to meet
Annex commitments. #### Article 5: Creating binational priorities for science and action. - The process of developing binational priorities builds consensus on the essential science and action required to restore and protect Great Lakes water quality and ecosystem health. In addition, communicating clear priorities enables GLEC members to engage others in working cooperatively to achieve the science and action priorities. Canada and the Unites States presented proposed binational priorities for science and action for public input at the 2013 Great Lakes Public Forum on September 9-10, 2013. The 2014-2016 binational priorities for science and action were subsequently finalized and posted on binational.net (www.binational.net/2014/03/20/psa-pasa-2014) in March, 2014. - The Parties' proposed binational priorities for science and action for 2017-2019 will be presented at the 2016 Great Lakes Public Forum for public input. #### Article 5: Convening a Great Lakes Public Forum. - Canada and the Unites States held the first Great Lakes Public Forum on September 9-10, 2013. The Forum provided an opportunity for Canada and the United States to discuss and seek public comment on the state of the lakes and binational priorities for science and action. The Forum also provided an opportunity for the International Joint Commission to discuss the Parties' progress reporting and the Commission's assessment of progress. Further information on the Forum, including the agenda, and other materials are available at binational.net (www.binational.net/2013/10/01/great-lakes-public-forum-2013). - The second Great Lakes Public Forum will be held on October 4-6, 2016 in Toronto, Canada. The Forum will provide an opportunity for public input on: progress in relation to the implementation of the 2012GLWQA; the state of the Great Lakes; and priorities for science and action. #### Article 5: Convening a Great Lakes Summit. - The GLWQA commits Canada and the United States to convening a summit meeting between the Parties to the GLWQA and the Great Lakes related commissions: the Great Lakes Commission, the Great Lakes Fishery Commission and the International Joint Commission. The purpose of the Summit is to promote increased coordination and effectiveness in the environmental management of the Great Lakes. The first Summit meeting was held on September 11, 2013, and included: 1) discussion of the missions, roles and responsibilities of the Commissions in relation to the GLWQA; 2) opportunities for enhanced collaboration between the Commissions and Canada and the United States on Lakewide Action and Management Plans; 3) coordination of the science and monitoring undertaken by Canada, the United States and the Commissions; and 4) use of emerging tools and gap analyses in addressing excessive nutrient levels in Lake Erie. - In addition to holding these formal Summit meetings, Canada and the United States have increased their engagement with the Commissions by: 1) holding meetings in conjunction with the biannual GLEC meetings; 2) holding other *ad hoc* meetings to discuss GLWQA-related issues; 3) by increasing communication between Commissions and the Lakewide Management Annex Co-Leads via periodic conference calls; and, 4) granting Commission participation or observation on all of the Annex Subcommittees. - A 2016 Great Lakes Summit will occur during the October, 2016 Great Lakes Public Forum to continue the successful dialogue between Canada and the United States and the Commissions. Article 6: Providing notification of planned activities that could lead to a pollution incident or have a significant cumulative impact on the Waters of the Great Lakes. Pursuant to Article 6(c), Canada and the United States have implemented procedures providing for notifications, of planned activities that could lead to a pollution incident or that could have a significant cumulative impact on the Waters of the Great Lakes. Proposed notifications are solicited from GLEC members and observers on a quarterly basis. Information on the notifications conveyed by one country to the other is available at http://binational.net/2015/05/06/notifications/. #### AREAS OF CONCERN ANNEX #### **OVERVIEW** Pursuant to the 1987 GLWQA, the Parties designated a total of 43 AOCs, 12 in Canada and 31 in the United States. AOCs are the most environmentally degraded sites within the Great Lakes, based upon an assessment of "beneficial use impairments", and contribute to degradation on a lakewide and Great Lakes ecosystem wide basis. The Areas of Concern Annex in the 2012 GLWQA reaffirms the commitment of Canada and the United States to restore water quality and ecosystem health in Great Lakes Areas of Concern (AOCs), and as described below, the Parties made have significant progress under this Annex in the last three years. Implementation of the Area of Concern Annex is co-led by Environment and Climate Change Canada and the United States Environmental Protection Agency. Fourteen Beneficial Use Impairments (BUIs) contributing to a location's designation as an AOC: - Restrictions on fish and wildlife consumption: - Tainting of fish and wildlife flavour; - Degradation of fish wildlife populations; - Fish tumours or other deformities; - Bird or animal deformities or reproduction problems; - Degradation of benthos (organisms living on lake bottoms); - Restrictions on dredging activities; - Eutrophication (undesirable algae); - Restrictions on drinking water consumption, or taste and odour problems; - Beach closings; - Degradation of aesthetics/visual appearance; - Added costs to agriculture or industry: - Degradation of phytoplankton and zooplankton populations (organisms that provide a crucial source of food to fish): - Loss of fish and wildlife habitat. #### PROGRESS TOWARD MEETING GLWQA COMMITMENTS - Between 2013 and 2016, the United States delisted the Presque Isle (Pennsylvania), Deer Lake (Michigan) and White Lake (Michigan) AOCs, signifying that remedial actions were completed and elimination of beneficial use impairments was confirmed through environmental monitoring and assessment. - To date, the Parties have delisted seven of the 43 AOCs: three in Canada (Collingwood Harbour in 1994; Severn Sound in 2003, and Wheatley Harbour in 2010) and four in the United States (Oswego in 2006, Presque Isle in 2013, and Deer Lake and White Lake in 2014). - Canada has designated two Canadian AOCs as AOCs in Recovery signifying that all remedial actions have been completed and monitoring of natural recovery is in progress (Spanish Harbour in 1999 and Jackfish Bay in 2011). - The Parties have completed all remedial actions at five other AOCS: Nipigon Bay in Canada; and Sheboygan Harbor (Wisconsin), Waukegan Harbor (Wisconsin), Ashtabula (Ohio), and St. Clair (Michigan) in the United States. With remedial work completed, these five AOCs are now being monitored to determine when the beneficial use impairments have been fully addressed and delisting can occur. - Work to restore environmental quality is continuing in all AOCs. By 2019, Canada projects completion of all remedial actions in four additional AOCs: Bay of Quinte, Peninsula Harbour, Niagara River and St. Lawrence River Cornwall; while the United States plans to complete management actions necessary for delisting in five additional AOCs: Black River, Buffalo River, Clinton River, Manistique River and Muskegon Lake. #### **BINATIONAL ACTIONS TAKEN** • Efforts to restore the 43 AOCs have been underway for over 25 years. Working with provincial, state and local governments, tribes, First Nations and community members and stakeholders, Canada and the United States have made significant progress in assessing beneficial use impairments, identifying their causes, engaging local communities in developing remedial action plans, and in implementing actions to restore beneficial uses of the environment. Action to restore Areas of Concern is primarily carried out domestically, however, Canada and the United States share information on approaches and lessons learned on an ongoing basis in order to increase the efficiency and effectiveness of AOC remediation efforts in both countries. #### Supporting overall implementation of AOC remediation. - A guidance document was developed to provide advice on the process, principles, challenges and roles and responsibilities for designating an AOC as an AOC in Recovery. The document recommends five factors to be considered before making a proposal or when reviewing a proposal to designate an AOC as an AOC in Recovery pertaining to restoration actions, delisting criteria, monitoring, considering time for recovery, and considering stakeholder input in the designation. The document will contribute to ensuring a consistent approach to designation of AOCs in recovery. - A Situation Analysis report was completed to document how AOC restoration activities are currently being implemented in Canada and the United States, including a review and comparison of agency roles and practices; status of and processes for RAPs, including delisting criteria, BUI removals, AOC delisting and public involvement; key challenges, targets and objectives; and recommendations on guidance needs and information sharing. The document will assist agencies in implementing continuous improvements to current practices. ### **DOMESTIC ACTIONS TAKEN** - Within Canada, Environment and Climate Change Canada and the Ontario Ministry of Environment and Climate Change share the lead for implementation of AOC remediation efforts. Progress is being made in all Canadian AOCs. Table X shows the status of BUIs in each Canadian AOC and Table X shows the status of remaining actions required to delist, or remove the designation of, a particular Canadian AOC. - In 2015 in-water construction began on the largest contaminated sediment
remediation project ever undertaken in a Canadian AOC. It involves the clean-up of 700,000 cubic meters of severely contaminated sediment in the Hamilton Harbour AOC. Other notable accomplishments in Canadian AOCs during the 2013 to 2016 period include restoring over 1.1 kilometers of shoreline habitat and enhancing 175 hectares of coastal wetlands and fish spawning grounds; investing almost \$562 million in upgrades to municipal wastewater treatment plants to significantly reduce nutrients, suspended solids and pollutants entering AOC waterways; and improving water quality and aesthetics by better managing urban and rural non-point sources of pollution in a number of AOCs. More information on the status of beneficial use impairments in Canadian AOCs, projects completed, and remaining issues to be addressed, can be viewed atwww.ec.gc.ca/raps. #### Habitat To help improve aquatic habitat and fish populations, Canada and its partners restored over 1.1 kilometers of shoreline habitat and 175 hectares of coastal wetlands and fish spawning grounds in a number of AOCs, which encompasses: - 19 habitat enhancement projects in the Bay of Quinte AOC that created two ponds and wetlands, 675 meters of vegetative buffer zones, and naturalized 40 meters of shoreline; - restoring 165 hectares of coastal wetland in the St. Clair River AOC; - restoring over 400 meters of shoreline in the Toronto Region AOC and transforming a disposal site for contaminated sediment into 9.3hectares of prime wetland on the Toronto waterfront once fully completed in 2018; and - through binational collaboration, constructing a second fish spawning reef in the Detroit River AOC adjacent to the existing one at Fighting Island that creates almost one hectare of new spawning habitat for fish. #### Wastewater To help improve water quality and aesthetics Canada, Ontario and local governments invested almost \$562 million in upgrades to municipal wastewater treatment plants in a number of AOCs, including: - building a new facility in the St. Clair River AOC (\$34.5 million); - upgrading to secondary treatment a facility in the Nipigon River AOC and Detroit River AOC (\$9 million and \$34 million, respectively); and - upgrading two facilities to tertiary treatment in the Hamilton Harbour AOC (\$154 million for one in Burlington, \$330 million for one in Hamilton now underway and to be completed in 2021). #### Non-point sources To help improve water quality and aesthetics Canada and its partners are addressing non-point sources of pollution in a number of AOCs, including: - implementing stormwater management plans and programs to better manage urban runoff and reduce pollution entering the waterways in the St. Marys River and Bay of Quinte AOCs; - separating storm and sanitary sewers in the St. Clair River AOCs; and - supporting citizen-driven efforts such as septic inspections and targeted Best Management Practices to reduce rural non-point source pollution in the Bay of Quinte AOC and community rain gardens to better manage rainfall and lower pressure placed upon storm sewers and wastewater treatment plants in the Detroit River AOC. AOC clean-up efforts in the United States are led by United States Environmental Protection Agency, with significant contributions from other federal agencies (i.e., National Oceanic and Atmospheric Administration, the United State Army Corps of Engineers), states, local governments and communities, and non-governmental organizations. Between 1987 and 2010, only one U.S. AOC was delisted. However, since the inception of GLRI, three additional AOCs have been delisted and management actions have been completed at additional U.S. AOCs. In addition, the Environmental Protection Agency projects that management actions will be completed at more AOCs by 2019. This remarkable pace of AOC restoration is due to the GLRI. First, the GLRI appropriation language makes clear that cleaning up and restoring AOCs is a priority. Second, federal agencies have been able to utilize over in GLRI funding to pay for this work. EPA-R5-2017-0002000000749 Remi Total Remove d 0 85 Original Total 143 5 10 Loss of fish & wildlife habitat 2002 688 1994 5 5 soobjeuktou bobnietions 5660 Degradation of phyto- and 2014 2012 agriculture or industry 1988 2011 of stsoo babbA 2016 2016 3016 2661 Degradation of aesthetics 21 2016 Ŧ. Beach Closings taste/odour problems 1997 water consumption, Restrictions - drinking 30.16 nuqesitable algae Eutrophication or 2 2016 2002 dredging activities 1995 866 1881 Restrictions on 2016 2016 2007 Degradation of benthos reproduction problems 2010 30.16 1999 201 Bird/animal deformities or other deformities 2010 2012 2011 1996 Fish turnours or wildlife populations Degradation of fish & BU! Removed 707 wildlife flavour 2011 1996 & dail to gnithisT wildlife consumption 8 & risit no anottaintee A Collingwood Harbour Delisted St. Lawrence River Original Total Total Removed Peninsula Harbour In Recovery Wheatley Harbour Delisted foronto and Region Remaining Total Spanish Harbour In Recovery Severn Sound Delisted Port Hope Harbour Hamilton Harbour St. Marys River Nipigon Bay Completed St. Clair River Niagara River Bay of Quinte Jackfish Bay Thunder Bay Detroit River | | E | |---|----------| | | 9 | | | 5 | | 1 | Conc | | | 0 | | | reas | | | ⋖. | | , | Lake | | | Sreat | | | an | | | ınadiz | | , | S | | | the | | | = | | | 뫋 | | | me | | | Dai | | | <u>m</u> | | | Use | | | ď | | | Ü | | | ene | | | ᄴ | | | S | | | Statu | | AOC | State | Restriction on fish & wildlife consumption | Tainting of fish & wildlife flavor | Degraded fish & wildlife populations | fish tumor or other
deformities | Bird & animal
deformities or
reproduction problems | Degradation of benthos | Restrictions on dredging activities | Eutrophication or
undestrable algae | Restrictions – drinking water consumption, taste/odor problems | Beach Closings | Degradation of
aesthetics | Added costs to agriculture or industry | Degradation of phyto-
and zooplankton | Loss of fish and wildlife
habitat | Original
Total | Total
Removed | Remaining
Total | |------------------------|-------|--|------------------------------------|--------------------------------------|------------------------------------|--|------------------------|-------------------------------------|--|--|----------------|------------------------------|--|--|--------------------------------------|-------------------|------------------|--------------------| | Waukegan Harbor | IL. | | | | | | | 2014 | | | 2011 | | | | 2013 | 6 | 3 | 3 | | Grand Calumet River | IN | | | | | | والمساودوووو | | والمستارة والرواسية | 2012 | | استنساني | 2011 | | | 14 | 2 | 12 | | Clinton River | MI | | | | | | | | | | | | | | | 8 | 0 | 8 | | Deer Lake | MI | 2014 | | | | 2011 | | | 2011 | | | | | | | 3 | 3 | 0 | | Detroit River | MI | | 2013 | | | | | | | 2011 | | | | | | 11 | 2 | 9 | | Kalamazoo River | MI | | | | | | | | | | 2011 | 2012 | | | | 8 | 2 | 6 | | Manistique River | MI | | | | | | 2007 | | | | 2010 | | | | 2008 | 5 | 3 | 2 | | Muskegon Lake | MI | 2013 | | | | | | 2011 | | 2013 | 2015 | | | | | 9 | 4 | 5 | | River Raisin | MI | - | | 2015 | | | | | 2013 | | 2013 | 2012 | | | 2015 | 9 | 5 | 4 | | Rouge River | MI | | | | | | | | | | | | | | | 9 | 0 | 9 | | Saginaw River & Bay | MI | | 2006 | | | | | | | 2008 | | | | | 2014 | 12 | 3 | 9 | | Torch Lake | MI | | | | 2007 | | | | | | | | | | | 3 | 1 | 2 | | White Lake | Mi | 2013 | | 2014 | | | 2012 | 2011 | 2012 | 2014 | | 2014 | | | 2014 | 8 | 8 | 0 | | St. Clair River | MI/ON | | 2010 | | | | 2015 | 2011 | | | | 2012 | 2012 | | | 10 | 5 | 5 | | St. Marys River | MI/ON | | | | | 2014 | | | | | | 2014 | | | | 10 | 2 | 8 | | Menominee River | MI/WI | | | | | | | | | | 2011 | | | | | 6 | 1 | 5 | | Buffalo River | NY | | | | | | | | | | | | | | | 9 | 0 | 9 | | Eighteenmile Creek | NY | | | | | | | | | | | | | | | 5 | 0 | 5 | | Oswego River | NY | 2006 | | 2006 | | | | | 2006 | | | | | | 2006 | 4 | 4 | 0 | | Rochester Embayment | NY | | | | 2015 | | | | 19.00 | 2011 | | | 2011 | | | 14 | 3 | 11 | | Niagara River | NY/ON | | | | 2016 | | | | | | | | | | | 7 | 1 | 6 | | St. Lawrence River | NY/ON | | | | | 10 | | | | | | | | 2015 | | 7 | 1 | 6 | | Ashtabula River | ОН | 2014 | | 2014 | | | | | | | | | | | 2014 | 6 | 3 | 3 | | Black River | OH | | | | | | | | | | | | | | | 9 | 0 | 9 | | Cuyahoga River | OH | | | | | | | | | | | | | | | 9 | 0 | 9 | | Maumee River | OH | | | | | | | | | | | | 2015 | | | 10 | 1 | 9 | | Presque Isle | PA | | | | 2013 | | | 2007 | | | | | | | | 2 | 2 | 0 | | Fox River/ S Green Bay | Wi | | | | | | | | | | | | | | | 13 | 0 | 13 | | Milwaukee Estuary | WI | | | | | | | | | | | | | | | 11 | 0 | 11 | | Sheboygan River | Wi | | : | | | | | 2015 | 2016 | | | | | | | 9 | 2 | 7 | | St. Louis River & Bay | Wi/MN | | | | | | | | | | | 2014 | | | | 9 | 1 | 8 | | Original Total | | 30 | 7 | 25 | 18 | 17 | 27 | 27 | 18 | 8 | 20 | 19 | 4 | 8 | 27 | 255 | | | | Total Removed | T | 5 | 3 | 4 | 4 | 2 | 3 | 6 | 5 | 6 | 6 | 6 | 4 | 1 | 7 | | 62 | | | Remaining Total | İ | 25 | 4 | 21 | 14 | 15 | 24 | 21 | 13 | 2 | 14 | 13 | 0 | 7 | 20 | | | 193 | BUI Removed BUI Impaired Canadian Areas of Concern - Status of Actions | AOC | Sediment Cleanup / Remediation | tatidaH
noitarote9A | \legizinM
WW (sirtzubni
finamteart | Non-point-source | Studies/
snoisesissevni | \noitsulev3 IU8
Inemssesså | qu-wolloł
gaitotinoM | Year RAP actions were
or will be completed | AOC Weblink | |--|--------------------------------|------------------------
--|------------------|----------------------------|-------------------------------|---------------------------------|---|---| | Thunder Bay | | | | | | | | beyond 2020 | For Canadian and | | Nipigon Bay | | | | | | | | Delisting expected
in 2016 | www.ec.gc.ca/raps | | Jackfish Bay (in recovery) | | | | N/A | | | | beyond 2020 | | | Peninsula Harbour | | | | N/A | | | | 2019 | | | St. Marys River | | | | | | | | beyond 2020 | | | Spanish Harbour (in recovery) | | | | | | | | beyond 2020 | | | St. Clair River | | | | | | | 91112 | 2020 | | | Detroit River | | | | | | | 100 | 2020 | | | Niagara River | | | | | | | | 2019 | | | Hamilton Harbour | | e v | | | | | | beyond 2020 | | | Toronto Region | | | | | | | | beyond 2020 | | | Port Hope | | N/A | N/A | N/A | | | | beyond 2020 | | | Bay of Quinte | | | | | | | | 2019 | | | St. Lawrence River (at Cornwall) | | | | | | | | 2019 | основного применения | | These Canadian AOCs are already delisted: Collingwood Harbour (1994), Severn Sound (2003), and Wheatley Harbour (2010) | ready deli | sted: Col | lingwood | Harbour | (1994), Sa | evern Sou | ind (200 |), and Wheatley Harbour (| 2010). | | All Actions
Completed (100%) | | Major | Majority of Actions
Completed (75+%) | ons
% | | A | Actions Well
Underway (50+%) | | Actions Required or to be Determined (<50%) | #### Updated 5/11/16 | AOC | State | Sediment Remediation | Habitat Restoration | Hydrologic
Controls/Diversions
Implemented | Safe Drinking Water
Provided | Engineering Design | Studies/Investigations | Other Regulatory
Action | BUI
Evaluation/Assessment | Year all remediation
and restoration actions
were or will be
completed | AOC <u>Weblink</u> | |------------------------|-------|----------------------|---------------------|--|---------------------------------|--------------------|------------------------|----------------------------|------------------------------|---|--| | Waukegan Harbor | 臫 | | | N/A | N/A | | | | | 2014 | | | Grand Calumet River | IN | | | N/A | N/A | | | | | 2020 | | | Clinton River | MI | N/A | | N/A | N/A | | | N/A | | 2017 | | | Deer Lake | MI | | | | N/A | | | | | Delisted 2014 | For additional information on United | | Detroit River | MI | | | N/A | N/A | | | | | 2023 | States and binational Areas of Concern;
go to : https://www.epa.gov/great-lakes | | Kalamazoo River | MI | | | N/A | N/A | | | | | 2030+ | aocs/list-aocs | | Manistique River | MI | | N/A | N/A | N/A | | | N/A | | 2018 | not down | | Muskegon Lake | MI | | | N/A | N/A | | | N/A | | 2018 | | | River Raisin | MI | | 2 | N/A | N/A | | | N/A | | 2016 | | | Rouge River | MI | | | N/A | N/A | | | | | 2021 | | | Saginaw River & Bay | MI | | | | | | | | | 2030+ | | | Torch Lake | MI | | N/A | N/A | N/A | N/A | | | | 2030+ | | | White Lake | MI | | | N/A | N/A | N/A | | N/A | | Delisted 2014 | | | St. Clair River | MI/ON | N/A | | N/A | N/A | | | N/A | | 2015 | | | St. Marys River | MI/ON | | | N/A | N/A | | | N/A | | 2016 | | | Menominee River | MI/WI | | 8 8 | | N/A | | | | | 2016 | | | Buffalo River | NY | | | N/A | N/A | | | | | 2017 | | | Eighteenmile Creek | NY | | N/A | | N/A | | | | | 2026+ | | | Oswego River | NY | N/A | N/A | | N/A | N/A | | | | Delisted 2006 | | | Rochester Embayment | NY | 775.9 | | , | N/A | | | | | 2016 | | | Niagara River | NY/ON | | | N/A | N/A | | | | | 2026+ | | | St. Lawrence River | NY/ON | | | N/A | N/A | | | | | 2026+ | | | Ashtabula River | ОН | | | N/A | N/A | N/A | | N/A | | 2013 | | | Black River | ОН | | | N/A | N/A | | | N/A | | 2017 | | | Cuyahoga River | ОН | | - 40 | N/A | N/A | | | | | 2021 | | | Maumee River | OH | | | N/A | N/A | | | N/A | | 2025 | | | Presque Isle | PA | | | N/A | N/A | N/A | | N/A | | Delisted 2013 | | | Fox River/ S Green Bay | WI | | | The state of s | N/A | =16.0 | | | | 2026+ | | | Milwaukee Estuary | Wi | | | N/A | N/A | | | | | 2026+ | | | Sheboygan River | WI | | | N/A | N/A | | | | | 2013 | | | St. Louis River & Bay | WI/MN | | | N/A | N/A | | L | | | 2020 | | U. S. Areas of Concern – Status of Actions All Actions Completed (100%) Majority of Actions Completed (75±%) Actions Well Underway (50±%) Actions Required or to be Determined (<50%) #### LAKEWIDE MANAGEMENT ANNEX #### **OVERVIEW** The Great Lakes are comprised of five of the twenty largest lakes in the world by volume: Superior (3), Michigan (7), Huron (8), Ontario (12) and Erie (18). The Great Lakes are connected and discharge through major river systems: the St. Marys, St. Clair, Detroit, Niagara and St. Lawrence. Given the size and ecological complexity of the lakes, restoring and protecting Great Lakes water quality and ecosystem health sometimes requires an approach that is specifically tailored to an individual lake. In the Lakewide Management Annex of the 2012 GLWQA, Canada and the United States commit to establishing Lakewide Action and Management Plans (LAMPs) for each of the five Great Lakes and their connecting river systems. These individualized plans will serve as blueprints for action, as they will identify and prioritize desired restoration and protection activities on each of the Great Lakes. This Annex's implementation is supported by the Lakewide Management Annex Subcommittee, co-led by Environment and Climate Change Canada and the United States Environmental Protection Agency. Organizations on the subcommittee include: [insert logos] #### PROGRESS TOWARD MEETING GLWQA COMMITMENTS | 2012 | 2013 | 2014 | 2015 | 2016 | |---|---|---|---|--| | Published LAMP
Annual Reports. | Published LAMP Annual Reports. | Published LAMP Annual Reports. | Published LAMP Annual Reports. | Published LAMI Annual Reports | | Established Lake
Ontario Science
and Monitoring
Priorities | Established Lake
Michigan Science
and Monitoring
Priorities | Established Lake Superior Science and Monitoring priorities | Established Lake
Huron Science
and Monitoring
priorities | Finalized Lake
Superior LAMPFinalized | | Finalized Lake
Michigan
Biodiversity
Conservation
Strategy. | Finalized Lake Erie Biodiversity Conservation Strategy | | Finalized Lake
Superior
Biodiversity
Conservation
Strategy. | Nearshore
Framework. | #### **BINATIONAL ACTIONS TAKEN** Developing the Lake Superior Lakewide Action and Management Plan. The Lakewide Action and Management Plan (LAMP) rotational reporting schedule was confirmed in 2014. Canada and the United States next undertook the development of the first LAMP under the 2012 GLWQA for Lake Superior including an extended period for public and agency input and review. In June of 2016, the Lake Superior LAMP was finalized. Developing a nearshore framework to identify nearshore areas of high ecological value and those that are or may become subject to severe stress due to the cumulative effects of multiple stressors. - Canada and the United States approved the Nearshore Framework in July 2016, and will pilot test implementation of the framework in Lake Erie beginning in 2017. - The framework provides a mechanism for undertaking a systematic, integrated and collective approach
for assessing nearshore health and identifying and communicating cumulative impacts and stresses, in order to inform and promote action at all levels to restore and protect the ecological health of Great Lakes nearshore areas. - Canada and the United States undertook a three-year process to engage a wide range of people and organizations throughout the Great Lakes basin in development of the Nearshore Framework. Establish Lake Ecosystem Objectives for each Great Lake, including its connecting river systems, as a benchmark against which to assess status and trends in water quality and lake ecosystem health. - Using direction from the 2012 GLWQA, in October of 2014 a draft guidance document for the development of Lake Ecosystem Objectives (LEOs) and a draft framework linking the LEOs to the Agreement's General Objectives and the State of the Great Lakes Indicators were developed. - The guidance suggests that LEOs should: - be practical and attainable or achievable within a 20-year timeframe; - provide sufficient direction for implementing LAMP actions; - have support from the agencies that implement the programs used to achieve the objective; - be based on sound, readily available data, so they can be reported on every five years; and - taken together, be a comprehensive suite which addresses each 2012 GLWQA General Objective and lake stressor. - A binational team was formed to draft, using the guidance, a suite of LEOs for Lake Erie. - LEOs for the other lakes will be developed during the next reporting cycle. The Parties, in cooperation and consultation with State and Provincial Governments, Tribal Governments, First Nations, Métis, Municipal Governments, watershed management agencies, other local public agencies, and the Public, shall undertake the lakewide management actions. - Canada and the United States have undertaken outreach and engagement activities through the work of the Lake Partnerships and the Annex Subcommittee. - In 2015, eight webinars involving over 800 participants were held to update the basin-wide and individual lake stakeholder communities about progress under the Lakewide Management Annex, and to discuss possible approaches to outreach and engagement. Outreach and Engagement sub-committees were formed under each Lake Partnership to develop and implement an outreach and engagement strategy for each lake. - In 2016, the Parties solicited interest from stakeholders in participating with the Lake Partnerships, including providing input on LAMP development and other Partnership activities to simply being kept apprised of Lake Partnership activities and receiving notice of requests for input on specific issues. The solicitation was sent through existing Great Lakes-related email distribution lists including GLIN-Announce, and Environment and Climate Change Canada and the United States Environmental Protection Agency's Great Lakes email databases in order to reach a wide breadth of stakeholders. - In 2013, 2014, and 2015, LAMP Annual reports were issued to provide an overview of accomplishments and challenges facing each lake. ### In This Issue dressing Challenges se Fsiron Watershed Map intact Information #### Overview With its land and watericages evolving through the interacting forces of water, gadings and clientate. Like it kinns and its water-theat have been straped into an area of global encological significance. Lake it have its removaried for its beachers, dunce, rugged shreetimes, coastal weblands, diverse river systems, forests and more than 30,000 silands. Conserving this precious resource is important to relatibilities sits encorrosus social, secretalized and econtents benefits. The Lake humon Partnership is expanding its work to be fully consistent will other Great Likes in pregaring its first Lakewide Action and Haragement FLAMFi in 2014. The princities of the Partnership are to continue to study, report on, and address key likuses such as contaminants in first and wildling bodieships and deceystein change, this and wildling habitat, and scalated domestic water quality issues including beach closings and algal fouring. The Lake Huron Partnership's 2015 Armusi Report provides information and - Turraing community interest into environmental action; Restoring finit populations and spawering habitat; Cleaning up of contaminated sediment in the Tittabawassies River Plootytain, and The St. Mary River Area of Concern and the Spanish Harbour Area in #### In This Issue #### What is the #### Overview in 2015, the Lake Ontakis Partnership continued its efforts to address importakenske stressors and worked cooperatively to protect and restore water and ecosystem retails. The was accomplished through a series of principly actions and programs, including the Emultional Biodiversity Conservation Strategy (BBCS), the Cooperative Science and Montring Institute (CSMI), reducing critical publishers, restoring fish species and a productive food water improving environmental quality for inearhors ecosystems and capacital well #### Accomplishments Fisheries Research and Monitoring in Lake Ontario Lake Ontario is home to an exceptional and disease salmon and tood fethery Chinos Salmon, Raintee Fred, Erwin Tool and Cohe Salmon are imported some in John the does made to Lake Tool and Cohe Salmon are imported some in John the does made to Lake Tool and Cohe Salmon are imported some in John the does made to Lake Tool and Cohe Salmon are imported to the salmon are imported to the salmon and the salmon are imported (CANNET) and New York State Department of Environmental Conservation (NYSSEC) have regulatly surveyed the amount of things activity on the open waters of Lake Centerio for over 30 years. The NYSSEC surveyed the amount of things activity on the open waters of Lake Centerio for over 30 years. The NYSSEC Surveyed the amount of the following activity is New York's Lake Centerio this does for 2005-2007 and in 20112012. OMNET's last completed the first-ever comprehensive survey of the amount of the stress activity or Consention stockards to Lake Center. These surveys believe to [A3 placeholder from EPA] #### **NUTRIENTS ANNEX** #### **OVERVIEW** In some areas of the Great Lakes, excess phosphorus loadings threaten the Great Lakes ecosystem by contributing to harmful and nuisance algal blooms that can cause drinking water impairments, exacerbate dead zones¹, and drive beach closures that result in loss of recreational opportunities. In response to these nutrient-induced impairments, Canada and the United States commit to coordinating binational actions to manage phosphorus loadings and concentrations in the Waters of the Great Lakes under the Nutrients Annex of the 2012 GLWQA. The Nutrients Annex requires Canada and the United States to establish phosphorus load reduction targets, allocated by country for the nearshore and open waters of Lake Erie, by 2016. Domestic Action Plans to achieve the Lake Erie targets must be developed by 2018. To combat the growing threat of toxic and nuisance algal development in Lake Erie, Canada and the United States adopted new phosphorus reduction targets for major tributaries and priority watersheds in the Lake Erie Basin on February 22, 2016, following a robust binational science-based process and study of the problem, and an extensive public consultation. The Parties and multiple partner agencies and are now working to develop Domestic Action Plans to meet the 2018 deadline. Excess phosphorus contributes to hypoxic conditions (i.e. low-oxygen conditions) in the cold bottom layer of the Lake Erie – when algae die, they decompose by a process that uses cellular respiration, which uses up oxygen; this can leaving little to no oxygen for the aquatic community which either suffocates or moves elsewhere, creating Lake Erie's "Dead Zone." ## PROGRESS TOWARD MEETING GLWQA COMMITMENTS This Annex's implementation is supported by the Nutrients Annex Subcommittee, co-led by Environment and Climate Change Canada and the United States Environmental Protection Agency. Organizations on the subcommittee include: #### **BINATIONAL ACTIONS TAKEN FOR KEY COMMITMENTS** By 2016, develop binational substance objectives for phosphorus concentrations, loading targets, and loading allocations for Lake Erie. - The Lake Erie algae problem was defined by the Nutrients Annex Subcommittee in relation to three main basins of the Lake the Western Basin, the Central Basin and the Eastern Basin. Information on algal patterns and species, lake circulation, and sources and loadings of phosphorus were studied and modeling experts from Canada and the United States used nine different computer simulation models to correlate changes in phosphorus levels with levels of algal growth. By comparing and contrasting the results of these models, the Nutrients Annex Subcommittee was able to recommended draft phosphorus load reduction targets to achieve the Lake Ecosystem Objectives for Lake Erie. - Information about the draft targets was made available both online for approximately 60 days up to August 31, 2106, through www.binational.net, and Environment and Climate Change Canada and United States Environmental Protection Agency websites, as well as through a number of binational and domestic face-to-face meetings with interested stakeholders including agricultural commodity groups, municipalities, Conservation Authorities, First Nations, non-government organizations, and others. Feedback received included both technical comments on the targets as well as ideas for action. - Following this significant amount of scientific study and public consultation undertaken, Canada and the United States adopted the following phosphorus reduction targets for Lake Erie (compared to a 2008 baseline): - To minimize the extent of hypoxic zones in the waters of the central basin of Lake Erie: a 40 percent reduction in total phosphorus entering the western and central basins of Lake Erie—from the
United States and from Canada—to achieve an annual load of 6,000 metric tons to the central basin. This amounts to a reduction from the United States and Canada of 3,316 metric tons and 212 metric tons respectively. - To maintain algal species consistent with healthy aquatic ecosystems in the nearshore waters of the western and central basins of Lake Erie: a 40 percent reduction in spring total and soluble reactive phosphorus loads from the following watersheds where algae is a localized problem: in Canada, Thames River and Leamington tributaries; and in the United States, Maumee River, River Raisin, Portage River, Toussaint Creek, Sandusky River and Huron River (Ohio). - To maintain cyanobacteria biomass at levels that do not produce concentrations of toxins that pose a threat to human or ecosystem health in the waters of the western basin of Lake Erie: a 40 percent reduction in spring total and soluble reactive phosphorus loads from the Maumee River in the United States. - Further science and analysis is needed to establish targets that will minimize impacts from nuisance algae in the eastern basin of Lake Erie. By 2018, develop binational phosphorus reduction strategies and domestic action plans to meet the objectives for phosphorus concentrations and loading targets in Lake Erie. Canada and the United States are working with multiple partner agencies, tribes, First Nations, Métis, and stakeholders to develop a binational phosphorous reduction strategy and Domestic Action Plans. These plans will identify the actions required to meet the agreed to load reduction targets. Stakeholders are being engaged during the development process, and the draft plans will be available for further consultation in 2017. Assess, develop, and implement programs to reduce phosphorus loadings from urban, rural, industrial and agricultural sources. This will include proven best management practices, along with new approaches and technologies. Ongoing efforts to limit excess phosphorus loading to the Great Lakes – through detergent bans, optimizing sewage treatment, and implementing best management practices on agricultural lands – must continue and be enhanced with better targeting and adoption. Work is underway to evaluate the existing programs in Canada and the United States, identify opportunities to maximize our phosphorus reduction efforts, and propose new programs or approaches to manage phosphorus loadings from municipal and agricultural point and nonpoint sources. Identify priority watersheds that contribute significantly to local algae development, and develop and implement management plans to achieve phosphorus load reduction targets and controls. • Canada and the United States identified eight priority watersheds – two in Canada and six in the United States – for phosphorus control to address algal blooms occurring in the nearshore waters of Lake Erie [reference figure]. **2008** Baseline Phosphorus loads for major tributaries to Lake Erie and the priority watersheds for nearshore **blooms.** Domestic action plans will further prioritize watershed implementation efforts to meet the new phosphorus load reduction goals. Undertake and share research, monitoring and modeling necessary to establish, report on and assess the management of phosphorus and other nutrients and improve the understanding of relevant issues associated with nutrients and excessive algal blooms. - Canada and the United States engaged many scientific experts in the development of the new phosphorus loading targets for Lake Erie, and are currently developing an approach to monitor and track progress towards the new targets. The following priorities for research, monitoring and modeling have been identified: - Monitoring of total phosphorus and dissolved reactive phosphorus loads and harmful algal blooms and hypoxia extent and duration to evaluate effectiveness of load reduction efforts and the lake's response over time; - Research on factors that contribute to harmful algal bloom toxin production; - Better understanding of internal phosphorus loads; - Factors controlling the growth of the nuisance alga, Cladophora; and - Improvement of ecosystem models to understand the relationship between external, internal As shown in the above chart [reference figure], under the previous 1987 GLWQA targets, Canada and the United States tracked phosphorus loads and sources on a whole-lake basis. The new targets for Lake Erie are refined to specific locations, forms of phosphorus, and time of year. Going forward, tracking and assessments related to these new targets will need refinement and appropriate data collection will be critical to the evaluation of implementation efforts and the Lake's #### **DOMESTIC ACTIONS TAKEN** response over time. Canada and Ontario are taking action under the Canada-Ontario Agreement on Great Lakes Water Quality and Ecosystem Health, 2014 to reduce phosphorus loads to Lake Erie through urban, agricultural, rural and industrial or commercial point and non-point initiatives including ongoing infrastructure and agricultural stewardship programs. To further improve the effectiveness of current and future phosphorus reduction actions in Lake Erie, Canada and Ontario, along with their partners and stakeholders are working to review and where necessary implement changes to the existing program, policy and legislative phosphorus management frameworks. Canada's 2016 Federal Budget allocated \$3.1 million in 2016 to 2017 to Environment and Climate Change Canada to continue to improve nearshore water and ecosystem health by reducing phosphorus and the resulting algae in Lake Erie. With these resources, the focus will shift from setting phosphorus targets to achieving them, including developing a domestic action plan with Ontario and other partners, and monitoring and reporting on progress. The governments of Ontario and Canada, through the Great Lakes Agricultural Stewardship Initiative (http://www.ontariosoilcrop.org/oscia-programs/glasi/), are supporting farmers in the Lake Erie and Lake St. Clair watersheds, and in Lake Huron's southeast shores watershed, implement Better Management Practices that reduce phosphorus loading to the Great Lakes. • The Province of Ontario is monitoring nearshore water quality at 17 drinking water intake sites in the Great Lakes, including five locations in Lake Erie; and monitoring 70 sites in the nearshore of the lakes to track long-term trends in Great Lakes water quality. This data helps understand the nearshore responses to climate change and other stressors, including changes in nutrient loading; helps the overall understanding of harmful algal blooms and nuisance algae; and supports the binational work on phosphorus reduction targets and actions. In 2013, Ontario launched the Multi-Watershed Nutrient Study, which examines the management of agricultural land and the extent of nutrient runoff in 11 agricultural watersheds in the basins of Lakes Erie, Ontario and Huron; and will help determine the role agriculture can play in resolving a very complex issue. - The United States has several permitting and funding programs to reduce phosphorus loadings from municipal, industrial and agricultural sources. For example, state environmental and agricultural programs establish discharge limits and comprehensive nutrient management plans to manage nutrient pollution. Since 2008, \$314 million in Farm Bill funding has supported conservation activities on 2.5 million acres of private land throughout the Great Lakes region. Since fiscal year 2010, over 410 nutrient reduction projects have been implemented in the Maumee River watershed with Great Lakes Restoration Initiative (GLRI) and Unites States Environmental Protection Agency Nonpoint Source Program funds. A new United States Department of Agriculture Natural Resources Conservation Service initiative launched in 2016 will help landowners reduce phosphorus runoff from farms by more than 640,000 pounds each year by effectively doubling the acres under conservation in the Western basin over the course of the three-year investment. - Through the GLRI, federal agencies and their partners are reducing nutrient loads into the Great Lakes. During fiscal year 2015, federal agencies and their partners funded nutrient and sediment reduction projects on over 100,000 acres of targeted watershed in the Great Lakes Basin. These projects are projected to prevent over 160,000 pounds of phosphorus from entering the Great Lakes annually. During fiscal year 2015, federal agencies and their partners also funded urban runoff projects that are anticipated to capture an average annual volume of more than 37 million gallons of untreated urban runoff per year. These projects reduce flooding, increase green space in urban areas, and return vacant properties to productive use. - The Unites States Geological Survey has installed 22 GLRI-funded edge-of-field monitoring stations on farms in the Maumee River basin, the Fox River basin, the Saginaw River basin and the Genesee River basin. These stations will gather weather data and sample runoff water during storm events. The water samples will be analyzed for their phosphorus, nitrogen, and sediment content. USDA-Natural Resources Conservation Service (NRCS) staff will assist the cooperating farmers with installing conservation practices in the field above the stations. This analysis will help quantify the value of conservation practices in reducing sediment and nutrient delivery from these fields, under these conditions, in order to improve water quality. - The GLRI is also funding the implementation of conservation practices including cover crops, silage leachate containment areas, a waste storage structure, and nutrient management on conservation demonstration farms in the Fox River basin. The farms are open for annual tours where other farmers in the watershed can view the
installed practices, hear farmers' opinions on the value that conservation farming practices can add to their farming operations, and ask questions. - GLRI-funded research led by the National Oceanic and Atmospheric Administration's Great Lakes Environmental Research Laboratory, in collaboration with partners from the University of Michigan's Cooperative Institute for Limnology and Ecosystems Research, is investigating impact of land use changes on algal bloom development in the western basin of Lake Erie and in Lake Huron's Saginaw Bay. The Great Lakes Environmental Research Laboratory combines remote sensing, monitoring, and modeling to produce weekly forecasts of Microcystin bloom concentration and transport in Lake Erie, which are distributed to regional stakeholders. National Oceanic and Atmospheric Administration researchers, with their partners at Heidelberg University, have also initiated early season projections of the seasonal harmful algal bloom severity in western Lake Erie. - During fiscal year 2015, GLRI partners established a network of four real-time continuous observing buoys to track detailed water quality conditions to support modeling, forecasting, and public warnings of harmful algal bloom conditions throughout western Lake Erie. The observing buoys are capable of tracking water quality and bloom conditions and measuring dissolved phosphorus concentrations at hourly intervals. During the 2015 bloom season, these buoys collected over 7,000 in-lake nutrient and water quality measurements, providing unprecedented spatial and temporal details of internal lake dynamics and bloom development. In addition to providing real-time tracking of harmful algal bloom conditions for water intake managers and recreational users, the observing data will be used to improve ongoing forecasting efforts covering a range of spatial and temporal scales including seasonal harmful algal bloom forecasts, 5-day forecasts, and vertical distribution forecasts. - Bullet on Collaborative - Michigan has finalized its 2016 Implementation Plan, which is the first step in achieving a 40% phosphorus reduction by 2025, for the Western Lake Erie Basin Collaborative (http://glc.org/projects/water-quality/lent/). The 2016 Implementation Plan can be found at Michigan's Department of Environmental Quality's Water Resources Division (http://www.michigan.gov/documents/deq/wrd-western-lake-erie 503547 7.pdf). - Also in support of the Western Lake Erie Basin Collaborative, Ohio has released its draft Western Lake Erie Basin Collaborative Implementation Plan to reduce phosphorus entering Lake Erie by 40 percent by 2025. The plan was developed with input from various stakeholder groups and state agencies and is available at epa.ohio.gov/Portals/33/documents/WLEBCollaborative.pdf. Public comments are requested by June 25, 2016. - Ohio is aggressively taking a multi-faceted, multi-year approach to reduce the discharges and runoff of nutrients to address harmful algal blooms to the Great Lakes. A summary of these Nutrient Management Initiatives can be found at Ohio Environmental Protection Agency (http://www.epa.ohio.gov/Portals/35/wqs/NutrientManagementInitiaitives.pdf). - Indiana is working with landowners in the communities to help improve the water quality of our streams and inland rivers, and ultimately Lake Erie. A summary of the Indiana Western Lake Erie Basin Initiatives can be found at the Indiana State Department of Agriculture (http://www.in.gov/isda/3261.htm). - Add PA update? - Mention Harmful Algal Bloom and Hypoxia Research and Control Act? - Mention all the work that EPA is doing nationally to address HAB impacts by issuing guidance under the Safe Drinking Water Act? Such as: - o Health Advisories and Health Effect Support Documents for Cyanotoxins - o EPA Recommendations for Management of Cyanotoxins in Public Water Systems - o Algal Toxin Risk Assessment and Management Strategic Plan for Drinking Water #### **DISCHARGES FROM VESSELS ANNEX** #### **OVERVIEW** The Great Lakes and St. Lawrence Seaway System is a binational trade route that supports tens of thousands of jobs on both sides of the border and serves as a critical transportation corridor for commodities such as iron ore, coal, minerals and grain. Canada and the United States recognize the environmental and economic importance of this system and ensuring it is safeguarded. The Discharges from Vessels Annex of the 2012 GLWQA commits the responsible authorities in Canada and the United States (Transport Canada, Fisheries and Oceans Canada, the Canadian Coast Guard, the United States Coast Guard, and the United States Environmental Protection Agency) to prevent and control vessel discharges that are harmful to the waters of the Great Lakes, including: Oil and hazardous Polluting Substances; Garbage; Wastewater and Sewage; Biofouling; Antifouling Systems; and Ballast Water. Under the 1987 GLWQA, biennial reports to the International Joint Commission from the responsible Canadian and the United States agencies (last submitted in 2012) consistently indicated that potential discharges of oil and hazardous substances, garbage, wastewater, ballast water and sewage from vessels are well regulated and that sufficient reception facilities are available to receive discharges ashore. This continues to be the case as enforcement of Canadian and United States domestic regulatory regimes and applicable international conventions has reduced the risk of discharges of concern from vessels. Canada and the United States are committed to the continued prevention and reduction of threats to the waters of the Great Lakes from all vessel discharges. PROGRESS TOWARD MEETING GLWQA COMMITMENTS Engagement efforts over the period: - Annual Meetings of Responsible Authorities to support implementation of the Annex; - Public and stakeholder outreach at the Great Lakes Waterway Conferences; - stakeholder engagement under the Canadian Marine Advisory Council; and - Coordination with the Aquatic Invasive Species Annex Subcommittee as needed. This Annex's implementation is supported by the Discharges from Vessels Annex Subcommittee, co-led by Transport Canada and the United States Coast Guard. Organizations on the subcommittee include: [Confirm following Subcommittee membership with Co-Leads: Transport Canada, Fisheries and Oceans Canada, Canadian Coast Guard, Ontario Ministry of Transportation, United States Coast Guard, United States Environmental Protection Agency, Wisconsin Department of Natural Resources, Indiana Department of Environmental Management, United States Maritime Administration] #### **BINATIONAL ACTIONS TAKEN FOR KEY COMMITMENTS** Discharges from Vessels Annex Subcommittee established. #### Preventing the discharge of Oil and Hazardous Polluting Substances from vessels. Transport Canada and the United States Coast Guard have a compatible and effective regulatory regimes in place to prevent the discharge of oil or hazardous substances on the Great Lakes from vessels and maritime transportation-related facilities that transfer oil or hazardous substances in bulk. The countries' port state control initiatives are risk-based vessel examination programs focused on foreign-flag vessels (non-Party) that operate in their respective waters to ensure compliance with international conventions and the Parties' laws and regulations. The Parties' flag-state programs ensure comparable compliance by the Canadian or United States flag fleets. • In response to the possibility of the maritime transportation of crude or other heavy oils on the Great Lakes, Canada and the United States created a working group on Maritime Transportation of Hydrocarbons and their by-products. This multi-agency group, chaired by the Transport Canada and the United States Coast Guard, serves as a binational forum to facilitate discussions regarding maritime shipments of hydrocarbons and their by-products (defined initially as crude oil and associated bulk liquids) and address any concerns that may arise in a coherent and consistent manner. The initial focus of this work is on freshwater, including the Great Lakes and its tributaries, and the St. Lawrence River and Seaway. A phased workplan has been developed and will focus on areas of mutual interest in preparedness, response, liability, and compensation. #### Addressing the discharge of Garbage from vessels. - The illegal discharge of Garbage from commercial vessels in the Great Lakes continues to be a rare event. For the Great Lakes and the coasts, the majority of marine debris entering the water comes from shore side sources. - No enforcement events for violations of the International Convention for the Prevention of Pollution from Ships Annex V (MARPOL V) or other garbage-related incidents were reported during [2013 to 2016] [the reporting period of this Progress Report of the Parties]. #### Ensuring adequate reception facilities for Garbage from vessels. Both Parties indicate there are sufficient and adequate MARPOL V reception facilities on the Great Lakes. There has not been a validated report of an inadequate reception facility on the Great Lakes since 2006. #### Addressing the discharge of Wastewater and Sewage from vessels. Several Great Lakes states have established "no discharge zones" of sewage in their respective waters in accordance with the United States Clean Water Act. Since Marine Sanitation Devices on most vessels are designed for continuous operations, it has been reported that some vessels with no or insufficient holding tanks have been forced to divert untreated sewage or treated effluent to ballast tanks to remain in compliance. Both Canada and the United States are in agreement that ballast tanks are not an appropriate place to store sewage – treated or untreated. #### Preventing harm from vessels' Antifouling Systems. • Both Canada and the United States have
regulations or policies in place implementing the International Convention on the Control of Harmful Anti-Fouling Systems on Ships (IAFS), which ensures anti-fouling paint applied to vessels is free of tributyltin. Anti-fouling paint containing tributyltin is not available for sale on either side of the border. Both countries issue IAFS certificates to their flag state vessels and incorporate the IAFS in their respective Port State Control enforcement programs. #### Addressing the discharge of Aquatic Invasive Species in the Ballast Water from vessels. The risk of the introduction of aquatic invasive species (AIS) to the Great Lakes via ballast water discharges from vessels arriving from outside of Canada's Exclusive Economic Zones² has been $^{^2}$ In relation to the Great Lakes, the Exclusive Economic Zones stretches 200 nautical miles from Atlantic coast and $\overline{37}$ | P a g e substantially reduced. Because of compatible ballast water exchange regulations between Canada and the United States and stringent binational enforcement, no new AIS attributable to the ballast water of these ships has been reported in the Great Lakes since 2006. For the past several years, the Ballast Water Working Group³ has examined 100% of these vessels. During these ballast management exams, 100% of the vessels' ballast tanks are examined to ensure that tanks have been fully exchanged or sufficiently flushed with sea water. Vessels that had not exchanged their ballast water or flushed their ballast tanks were required to either retain the ballast water and residuals onboard, treat the ballast water in an environmentally sound and approved manner, or return to sea to conduct a ballast water exchange. Vessels that were unable to exchange their ballast water or residuals and that were required to retain them onboard received a verification exam during their outbound transit, prior to exiting the Seaway. The Ballast Water Working Group verification efforts indicated that there was no non-compliant ballast water discharged in the Great Lakes. The Ballast Water Working Group annual reports for the past three years can be accessed at: - o http://www.greatlakes-seaway.com/en/pdf/2014 BW Rpt EN.pdf - o http://www.greatlakes-seaway.com/en/pdf/2013 BW Rpt EN.pdf - o http://www.greatlakes-seaway.com/en/pdf/2012 BW Rpt EN.pdf - Significant work is underway to move the current exchange-based programs to binationally compatible technology-based regimes that will require treatment of all ballast water to a common discharge standard and address the risk of spreading organisms. As agreed in the 2012 GLWQA, both Parties are taking into account, as appropriate, the standards set forth in the International Convention for the Control and Management of Ships' Ballast Water and Sediments, 2004 (the "BWM Convention") and its associated guidance. Canada has acceded to the BWM Convention while the United States Environmental Protection Agency, the United States Coast Guard, and the American Great Lakes States have established requirements under the National Invasive Species Act and the Clean Water Act. While there are differences between these approaches, the United States and Canada continue to work closely together including bilaterally through annual meetings of the responsible authorities outlined in the Discharges from Vessels Annex and at the International Maritime Organization towards maintaining compatible, fair, practicable and environmentally protective ballast water requirements in both countries. #### Preventing the discharge of Biofouling from vessels. Both Canada and the United States have participated in the development of the International Maritime Organization's 2011 Guidelines for the Control and Management of Ships' Biofouling to Minimize the Transfer of Invasive Aquatic Species. #### **DOMESTIC ACTIONS TAKEN** includes the Gulf of St. Lawrence. ³ The Ballast Water Working Group is comprised of representatives from the United States Coast Guard, the U.S. Saint Lawrence Seaway Development Corporation, Transport Canada, and the Canadian St. Lawrence Seaway Management Corporation. Created in 2006, the group's mandate is to develop, enhance, and coordinate binational compliance and enforcement efforts to reduce the introduction of aquatic invasive species by transoceanic ships via ballast water and residuals. #### **Ballast Water** - Were the BWM Convention to enter into force now, technical and regional compatibility factors would pose challenges to ships operating primarily on the Great Lakes-St. Lawrence Seaway system. As this Convention has not yet entered into force, Canada will continue to monitor these challenges and is considering options in case these challenges persist upon the Convention's entry into force. Canada remains committed to the Convention and will continue to work with the United States and other stakeholders towards compatible, fair, practicable and environmentally protective Great Lakes requirements meeting Canada's international obligations. - Canada also continues to actively conduct ballast water research applicable to the Great Lakes. Results of a recent national risk assessment indicate that the ballast water transported by Great Lakes ships poses a high risk for spreading aquatic invasive species between ports in Canada and the United States when compared with the ballast water transported by international vessels (which are subject to regulations in both countries focused on lowering the risk of introductions from foreign ports). Studies since 2012 undertaken by Canada on ballast water research include: - Combining ballast water exchange and treatment to maximize prevention of species introductions to freshwater ecosystems - Are the Great Lakes at risk of new fish invasions from trans-Atlantic shipping? - Relative Invasion Risk for Plankton across Marine and Freshwater Systems: Examining Efficacy of Proposed International Ballast Water Discharge Standards - National risk assessment for introduction of aquatic nonindigenous species to Canada by ballast water - Evaluating efficacy of a ballast water filtration system for reducing spread of aquatic species in freshwater ecosystems - Domestic ships as a potential pathway of nonindigenous species from the St. Lawrence River to the Great Lakes. - Physical dispersion and dilution of ballast water discharge in the St. Clair River: Implications for biological invasions - <u>Taxon- and vector-specific variation in species richness and abundance during the transport</u> stage of biological invasions - A multi-dimensional approach to invasive species prevention - Role of domestic shipping in the introduction or secondary spread of nonindigenous species: biological invasions within the Laurentian Great Lakes - Efficacy of NaCl brine for treatment of ballast water against freshwater invasions - Risk assessment for ship-mediated introductions of aquatic nonindigenous species to the Great Lakes and freshwater St. Lawrence River 0 #### Oil and Hazardous Substances - On August 28, 2015, the marine archaeological group, Cleveland Underwater Explorers (CLUE), discovered the barge ARGO (which had sunk during a storm in 1937 while carrying approximately 200,000 gallons of petroleum product believed to be benzol and/or a light petroleum variant) approximately nine miles east of Kelleys Island and two miles south of the international border with Canada in approximately 13 meters of water. On September 8, 2015, CLUE notified the United States Coast Guard of the discovery. - The GLEC was notified of a suspected minor discharge of product from the barge in accordance with Article 6 (a) of the 2012 GLWQA, and soon after, a Unified Command consisting of the Ohio Environmental Protection Agency and the United States Coast Guard was established. Assistance was provided by the United States Environmental Protection Agency, Ohio Department of Natural Resources, National Oceanic and Atmospheric Administration, Ohio Emergency Management Agency, Canadian Coast Guard, and Environment and Climate Change Canada. Over the following six weeks, the Unified Command oversaw the survey of the tank barge, preparations for the safe removal of several thousand gallons of a benzene-type hazardous substance from two of the barge's tanks. #### **Ballast Water** - The United States Coast Guard continues to implement its rulemaking that established a performance standard for the allowable concentration of living organisms in ballast water discharged from ships in waters of the United States. Five independent laboratories are in the process of testing 18 systems for type approval⁴. Numerous additional vendors have filed a Letter of Intent to begin type approval testing. - Additionally, the Coast Guard currently has issued 56 interim Alternative Management System determinations for ballast water treatment systems and the Coast Guard expects type approval applications from several of these manufacturers. These designations are intended as a bridging strategy to allow for the use of Ballast Water treatment systems that are type-approved by foreign administrations in accordance with the International Maritime Organization Ballast Water Management Convention of 2004. - The first four ballast water management systems (BWMSs) type approval applications submitted to the Coast Guard proposed using an alternative test method of determining the efficacy of the ultraviolet BWMSs. A subsequent Coast Guard review concluded that the alternative test method was not equivalent because it does not measure the efficacy of the BWMSs to the required performance standard required by the regulations and the BWMSs were not approved. - Through the Great Lakes Restoration Initiation, the United States supported the independent ⁴ Type Approval is the primary process for equipment and materials to receive United
States Coast Guard approval. See http://www.uscg.mil/hq/cg5/cg5214/eqpt_approval.asp for further information. performance testing of ballast water systems for use in freshwater ecosystems. During 2013 to 2015, over 20 ballast water systems were tested at the Great Ships Initiative facility in Superior, Wisconsin. The Great Ships Initiative (www.greatlakesinitiative.org) mission is to accelerate research, development and implementation of effective ballast water management systems (BWMSs) on board commercial vessels that visit the Great Lakes region from abroad. #### **AQUATIC INVASIVE SPECIES ANNEX** #### **OVERVIEW** Aquatic invasive species (AIS) currently in the great are undermining efforts to restore and protect water quality. These organisms are altering the way nutrients and chemical contaminants move within the ecosystem, affecting the productivity of the lakes and integrity of the aquatic food web. In addition, future invaders, such as Asian Carps, could further disrupt ecosystem integrity. Once invasive species become established in the Great Lakes, they are costly to control and nearly impossible to eradicate. Consequently, prevention is the most effective approach to dealing with this threat. The 2012 GLWQA commits Canada and the United States to: preventing the introduction of AIS; controlling or reducing the spread of existing AIS; and eradicating, where feasible, existing AIS with the ecosystem. Canada and the United States are working to minimize the risk of Asian carps and other species invading the Great Lakes by a combination of species and pathway risk assessment and by taking risk management actions. A second line of defence has been also created by establishing an early detection and rapid response initiative with the goal of finding new invaders and preventing them from becoming established. This basin wide effort resulted in several new detections of grass carp and rapid agency responses. As a result of actions taken over the last three years, no new AIS are known to have become established in the Great Lakes; however, the recently detected evidence of Grass Carp reproduction in the Sandusky River, Ohio USA, is of great concern. Canada and the United States are committed to further improving and strengthening the AIS actions and initiatives under the Aquatic Invasive Species Annex. ### PROGRESS TOWARD MEETING GLWQA COMMITMENTS This Annex is being implemented by the Aquatic Invasive Species (AIS) Annex Subcommittee, co-led by Fisheries and Oceans Canada and the United States Fish and Wildlife Service. The AIS Annex Subcommittee delivers its work in close cooperation with the Great Lakes Panel on Aquatic Nuisance Species, supported by the Great Lakes Commission. Organizations on the subcommittee include: [Insert logos from: Fisheries and Oceans Canada, U.S. Fish and Wildlife Service, 1854 Treaty Authority, Canadian Aquatic Invasive Species Network, Chippewa-Ottawa Resource Authority, First Nation / Metis — Chiefs of Ontario, Great Lakes Indian Fish and Wildlife Commission, Great Lakes Commission, Great Lakes Fishery Commission, Great Lakes St. Lawrence Cities Initiative, Michigan Department of Environmental Quality, Minnesota Department of Natural Resources, New York Department of Environmental Conservation, Ohio Department of Natural Resources, Ontario Federation of Anglers and Hunters, Ontario Ministry of Natural Resources, Ontario Invasive Species Centre, The Nature Conservancy, U.S. Environmental Protection Agency, and U.S. National Oceanographic and Atmospheric Administration.] #### BINATIONAL ACTIONS TAKEN FOR KEY COMMITMENTS #### Conducting risk assessments on AIS species for their entry into the Great Lakes. - Canada and the United States undertook an assessment of existing species risks assessments, in coordination with Great Lakes jurisdictions and their partners. Based on this analysis, a binational assessment of the ecological risks and impacts related to Grass Carp establishment was completed for peer-review. - Members of the Aquatic Invasive Species Annex Subcommittee are also supporting work of the Conference of Great Lakes Governors and Premiers Aquatic Invasive Species Task Group to harmonize species risk assessments across the basin. - A risk analysis of illegal trade and transport into Great Lakes jurisdictions was completed and a report of these findings was delivered to the Great Lakes Fishery Commission's binational Law Enforcement Committee. The report recommends risk management efforts to address the unacceptable risks documented for species regulated by state, provincial, and federal agencies in the internet, live bait, live food, aquaculture, private pond/lake stocking, water garden, aquarium/pet, and cultural release pathways. The AIS Subcommittee will continue to work with the Law Enforcement Committee to address risk management needs described in the risk analysis report. - A new web-based tool called, *Great Lakes Detector of Invasive Aquatics in Trade*, has been developed by the Great Lakes Commission to better quantify the threat posed by the internet commerce pathway. The tool is available to managers in Canada and the United States to inform and help target risk assessment, monitoring and surveillance, and enforcement. - In the United States, a government-industry partnership is working toward developing new U.S recreational boat design standards for building new "AIS-Safe Boats" and U.S. standards for AIS removal from existing recreational boats. - In Canada, a National Recreational Boating Risk Assessment, with focus on the potential movement of AIS within Canadian and United States waters of the Great Lakes, was carried out during 2015 and the products of this assessment will assist in identifying areas to focus on controlling inadvertent spread of AIS by recreational boaters. #### Success preventing invaders Historically, an average of one non-native species was found to be established in the Great Lakes about every 8 months. Most of those introductions resulted from ballast water discharge. No ballast-mediated introductions, and no additional introductions from other pathways, have resulted in establishment of a non-native species since 2008. The success of joint United States and Canada ballast water exchange management has been a major contributor, with no new introductions attributable to ships since 2006. #### Undertaking outreach and engagement in support of meeting various annex commitments. While most outreach and engagement efforts are implemented domestically, experts from government agencies and non-government groups are working across jurisdictional lines to share resources and approaches to support influencing behaviors to prevent invasion and spread of AlS. • To support this work, the binational Great Lakes Panel on Aquatic Nuisance Species' Information and Education Committee developed a synthesis of communication and education campaigns, programs, and products, which support prevention efforts for a variety of pathways, including recreational boating. #### **Special Binational Focus: Coordination on Asian Carps** - The Great Lakes Restoration Initiative provides support to the multi-agency and binational Asian Carp Regional Coordinating Committee, which has implemented the Asian Carp Control Strategy Framework — including surveillance, response actions and testing of new control technologies. More information about the Asian Carp Regional Coordinating Committee is available at http://www.asiancarp.us. - Canada, working closely with Ontario and United States jurisdictions, has delivered its Asian Carp Program based on four pillars: prevention, early warning, response, and management. The program includes extensive early detection surveillance activities in close conjunction with environmental DNA monitoring carried out by Ontario. - The risk of barge shipping-related transport of fishes, within the Chicago Area Waterway System, was evaluated, and the resulting report delivered to the Asian Carp Regional Coordinating Committee. Results indicate that free-swimming fish, both wild fish and fish placed in and around barges by researchers, can remain between barges for substantial distances. In one trial, live fish were transported more than nine miles on the Illinois River through Brandon Road Pool, Lockport Lock and the United States Army Corps of Engineers' electric dispersal barriers. Improvements in the lock and barrier system are being pursued to reduce this risk. - Canada, in coordination with the Ontario Federation of Anglers and Hunters, the Invasive Species Centre, and Royal Ontario Museum carried out a large scale outreach campaign specific to raise awareness and public understanding of methods to prevent transporting Asian carps. - U.S. federal partners supported the development and testing of a near-real-time environmental DNA surveillance tool in order to support law enforcement efforts relating to illegal transport of Asian carp species into Great Lakes jurisdictions. - The United States tested the use of carbon dioxide as an environmentally sound approach to help contain Asian carps in the Mississippi River system. The results demonstrate that this containment technology may help at reducing the spread of Asian carps. - Work was initiated in the United States on the development and testing of a system to deliver a piscicide (Antymicin) that would target Bighead and Silver Carps and leave other fish unharmed. This technology could be used to reduce populations in the Chicago Area Waterway System and Illinois River and minimize risk of establishment in the Great Lakes themselves. ## By 2015, develop and implement an Aquatic Invasive Species early detection and rapid response initiative. - Canada and the United States developed an AIS early detection and rapid response initiative as a part of a number of strategies being applied to prevent the introduction and spread of AIS. Early
detection and rapid response provide a strong second line of defense to prevention efforts by finding AIS populations, including Asian Carps, while they are still within a small area and preventing them from becoming established. This effort marks the first basinwide early detection effort in the history of the Great Lakes, an effort that will be strengthened and enhanced in the future. A full account of the achievements to date under the initiative is available at www.binational.net (http://binational.net/2015/02/23/ais-early-detection/). - Key components include: - An "AIS species watch list" of those species of the highest priority of risk of invading the Great Lakes. - A list of priority locations to undertake surveillance for the potential introduction of species on the "AIS species watch list"; - Protocols for monitoring and surveillance methodologies (such as environmental DNA sampling and sampling using gears that collect fishes and bottom-dwelling invertebrates) so that a potential invader is promptly observed and reported; - The sharing of relevant information amongst the responsible departments and agencies to ensure prompt detection of invaders and prompt actions to respond to them; and - The coordination of plans and preparations for any response actions necessary to prevent the establishment of newly detected AIS. - Detections of Asian Carps in Canadian waters triggered several coordinated response efforts under the incident command system, successfully testing the Canadian domestic response framework. The Conference of Great Lakes Governors and Premiers has also provided critical leadership with the establishment of their Mutual Aid Agreement as the basis for the states and provinces to share resources to deal with AIS. #### **DOMESTIC ACTIONS TAKEN** #### Conducting risk assessments on AIS species for their entry into the Great Lakes. - During 2013, a national risk assessment of ballast water introductions of AIS species was completed with focus on the Great Lakes and St. Lawrence River which identified the need to reduce risk with the addition of ballast water treatment for ships from outside and for ships within the Great Lakes. - During 2013, a peer review of available tools was carried out and science advice was published about screening-level risk assessment protocols for nonindigenous freshwater organisms in trade in Canada that provides guidance to evaluating risks to support prevention actions. #### Preventing introduction and spread of AIS through regulations. - With extensive public and government consultation, Canada established new aquatic invasive species regulations under the Fisheries Act in June 2015 creating new prohibitions for species based on risk and enabling new measures for prevention and control of AIS in Canada and at its borders. - The Province of Ontario, based on broad stakeholder input, gave royal assent in November 2015 to Bill 37 – the new Invasive Species Act – which will come into force within one year, providing tools and authorities needed to prevent and respond to all invasive species including prohibitions for high risk species. #### Implementing early detection and rapid response. Findings of Grass Carp in lakes Erie and Ontario between 2013 and 2015 have triggered successful coordinated response efforts under the incident command system testing the domestic response framework established for Asian carps. #### Conducting research to develop and test AIS detection, containment, and control technologies. - Research has been completed about the capacity for invasive fish species, including Asian Carp, to move through the Welland Canal and the St. Mary's River canals to help better understand the risk of spread and opportunities for control. - Research on repulsion devices to potentially contain and control fish species, including Asian carps, has been carried out in a large-scale mesocosm. • Canada continues to actively research monitoring and treatment technologies to advance efforts to prevent AIS movement in the ballast water of ships. ### Conducting risk assessments on AIS species for their entry into the Great Lakes. Approximately 160 risk assessments were conducted by the United States on non-native species and published on www.fws.gov/fisheries/ANS/species erss reports.html) These risk assessments have identified high risk fish, crustaceans, and mollusks that thrive in climates similar to the Great Lakes Basin and could become established if they are introduced in large enough numbers. ### Preventing introduction and spread of AIS through regulations. - Based on risk assessments and supporting science, the state of Michigan amended its prohibited species list to include several new invasive species. Additional information can be found at: http://www.michigan.gov/invasives/0,5664,7-324-68071---,00.html - The United States Fish and Wildlife Service has proposed adding 11 non-native freshwater species to the list of injurious species under the Lacey act. There are 10 fish (crucian carp, Eurasian minnow, Prussian carp, roach, stone moroko, Nile perch, Amur sleeper, European perch, zander, wels catfish) and 1 crayfish (common yabby). #### Implementing early detection and rapid response. - Great Lakes states are have been actively monitoring and responding to detections of invasive species, including recent responses for invasive Water lettuce, New Zealand Mudsnail, Parrot Feather, Red Swamp Crayfish, Water Hyacinth, Water Chestnut, European Frogbit, Starry Stonewort, Northern Snakehead, and small killifish (Mummichog) - The invasive species hydrilla was discovered in the Cayuga Lake Inlet and Erie Canal, New York. An aggressive eradication projects started at both of these locations in response to concerns about the spread of this invasive plant species throughout the Great Lakes basin. Despite signs of a successful control, eradication may take several more years due to ability of root systems to lay dormant in the sediment. More information about hydrilla can be found at http://stophydrillawny.org/. - A performance evaluation of early detection monitoring surveillance programs on Lake Superior revealed new opportunities to substantially increase the speed and sensitivity of detecting newlyintroduced species. By focusing efforts on areas within ports known to carry rare and invasive species, and by increasing the use of sampling equipment that captures a wide diversity of organisms, the effectiveness at detecting invasive species has nearly doubled. To continue improvement in the future, the United States Environmental Protection Agency and United States Fish and Wildlife Service have implemented an adaptive cycle of surveillance assessment, refinement, and implementation. ### Conducting research to develop and test AIS detection, containment, and control technologies. - New molecular genetic techniques are being developed for detecting rare invasive species. Current research efforts funded by the Great Lakes Restoration Initiative (GLRI) have focused on: 1) expanding the use of environmental DNA (i.e. "free" DNA found in water); 2) genetic analyses of larval fish samples to detect the reproduction of invasive fish; and 3) genetic analyses of lake sediments or benthos for detection of invasive species such as zebra mussels, quagga mussels, and spiny water fleas. The current trend of advancing molecular genetic methods coupled with decreasing costs is extremely promising. - The sea lamprey mating pheromone, 3kPZS, was official registered in the United States as the first ever vertebrate pheromone biopesticide. Like an alluring perfume, the mating pheromone is a scent released by male sea lampreys to lure females onto nesting sites. The pheromone could be used to lure male sea lamprey into traps. Research and development of the mating pheromone was funded by the Great Lakes Fishery Commission, with additional support from the Great Lakes Restoration Initiative, in collaboration with federal government, university, and private industry partners. - Based on extensive testing, the commercial product "Zequanox" was approved for open water use to combat invasive zebra and quagga mussels in lakes, rivers, recreation areas and other open bodies of water. U.S. agency and academic partners are exploring its strategic use in the Great lakes and inland lakes. Zequanox is composed of dead cells derived from a naturally occurring soil microbe, and it controls mussels in all life stages. Its active ingredient has low toxicity and presents little risk to non-target organisms. - The United States is funding and supporting new methods to control the spread of invasive *Phragmities* including: - Research at Cornell University to identify insects that prey on *Phragmites*. The researchers are evaluating the host-specificity of each insect species in preparation for wide-spread releases of insects that may help control *Phragmites* populations. - Work by the United States Geological Survey and its partners to identify the fungal microbes that help provide nutrients to non-native Phragmites, and work to find ways to slow Phragmites growth by disrupting this symbiotic relationship. - O Work by Wayne State University and United States Geological Survey scientists to silence important genes in Phragmites (e.g., those for flowering, seed set, and photosynthesis) in an effort to reduce its competitive advantage. These scientists are testing gene silencing of photosynthesis in *Phragmites*. The next step will be to test the technology in the field and develop an application method that will be feasible over a large scale. - More information about Phragmities can be found at: http://greatlakesphragmites.net/research/control-options/. #### Assessing the potential impacts of climate change
on AIS. A climate change projection tool was developed that can project the AIS climate niche, within the Great Lakes basin, under several climate change scenarios published by the Intergovernmental Panel on Climate Change (http://www.ipcc.ch/) for the years 2050 and 2070. #### **HABITAT AND SPECIES ANNEX** #### **OVERVIEW** The Great Lakes basin is surrounded by more than 10,000 miles of shoreline that supports globally rare habitats and species. The Great Lakes ecosystem's sand dunes, coastal marshes, rocky shorelines, lakeplain prairies, savannas, forests, fens, wetlands and other landscapes contain features that are unique to the basin and support numerous fish and species. Though the Great Lakes ecosystem contains expansive habitats and numerous native species, ecological threats exist that target both aquatic and terrestrial domains. The Habitat and Species Annex of the 2012 GLWQA commits Canada and the United States to conserve, protect, maintain, restore and enhance the resilience of native species and their habitats, as well as supporting essential ecosystem services in the basin. Actions taken by the Parties are contributing to the recovery of populations of species at risk, the restoration of degraded native habitat and species, and working towards a net gain in habitat. PROGRESS TOWARD MEETING GLWQA COMMITMENTS This Annex's implementation is supported by the Habitat and Species Annex Subcommittee, co-led by Environment and Climate Change Canada and the United States Fish and Wildlife Service. Organizations on the subcommittee include: [insert logos] #### **BINATIONAL ACTIONS TAKEN FOR KEY COMMITMENTS** By 2015, development Biodiversity Conservation Strategies for all of the lakes, including connecting channels, and being implementing priority actions identified in the Strategies through existing #### programs and agreements. • Lakewide habitat and species protection and restoration conservation strategies, also called Biodiversity Conservation Strategies (Strategies), were developed for all five of the Great Lakes as of February 12, 2015. The Strategies assess the status and threats to lakewide biodiversity and recommend conservation priorities for native species and their habitats. The Executive Summaries are available on binational.net (www.binational.net/2015/02/23/habitat-and-species-strategies). - Each Strategy is a product of extensive collaboration among lakewide regional and local stakeholders. They serve as a tool to foster and guide a shared implementation of priority conservation actions among federal, state, provincial, tribal, academic, municipal and watershed management agency representatives. There is strong support for the adaptive management approach in the planning, application and implementation of the Strategies across the lakes. - The Lake Superior Partnership is currently in the process of preparing watershed-level plans to further guide and support implementation of the recently released (2015) Biodiversity Conservation Strategy at a local level. The Lake Ontario Partnership used the broader Lake Ontario Biodiversity Strategy to produce an implementation plan to focus on and implement priority actions within the 2012 GLWQA. Other Lake Partnerships are identifying regional (or watershed based) biodiversity objectives and outlining the specific actions required to address habitat and species issues on a more manageable scale. • The table below illustrates several examples of how the Strategies are being used in each lake basin to inform and implement priority conservation actions. ### Lake Huron: Healthy Lake Huron Healthy Lake Huron is a team of dedicated Canadian environmental professionals who coordinate actions aimed at improving overall water quality along the southeast shores of Lake Huron. Healthy Lake Huron is taking actions to address the issue of non-point source pollution, which has been identified as a critical threat in their Biodiversity Conservation Strategy. Membership of the Healthy Lake Huron group (www.healthylakehuron.ca) ## Lake Superior: Superior Streams The Lake Superior **Biodiversity Conservation** Strategy classified dams and barriers as a high threat to meeting biodiversity targets. Dams and barriers are also critical in prevention of spread of aquatic invasive species. For example, the pictured dam on the Black Sturgeon River is identified as limiting Lake Sturgeon and Walleye spawning habitat but is also critical preventing significant Sea Lamprey infestation. Critical work on understanding these trade-offs is underway The Camp 43 Dam on the Black Sturgeon River, Ontario (Photo Credit: Ontario Ministry of Natural Resources and Forestry) by Lakehead University and by the Aquatic Habitat Connectivity Collaboration supported by the Great Lakes Fishery Commission. Decisions about maintaining or removing dams require the necessary engagement with all stakeholders and Indigenous peoples to ensure that all views and objectives are considered. ## Lake Ontario: Bloater Fish Stocking In Lake Ontario, the Binational Lake Partnership identified the restoration of native preyfish species as a priority for the implementation of the Biodiversity Conservation Strategy. Canadian and United States agencies have initiated a program to reintroduce bloater to the lake in 2012. The program is ongoing, and nearly 62,000 bloaters were released in November, 2015. Dale Hanson from the Green Bay Fish and Wildlife Conservation Office assists with bloater egg collection (Photo Credit: United States Fish and Wildlife Service) ## Lake Michigan: Lake Herring Restoration Restoration of the native Lake Herring is a priority identified in the Lake Michigan Biodiversity Conservation Strategy. To help restore the species to its historical status as a primary prey fish in Lake Michigan, the Little Traverse Bay Bands of Odawa Indians released nearly 50,000 summer fingerling and 8,000 fall fingerling into Little Traverse Bay, Michigan, in 2014. The Little Traverse Bay Bands of Odawa Indians is currently evaluating the success of the fingerling releases. Lake Herring (Photo Credit: United States Environmental Protection Agency) ### Lake Erie: Western Basin Conservation Vision Targets and goals from the Lake Erie Biodiversity Conservation Strategy were used in the development of a regional implementation plan called the Western Basin Conservation Vision. This plan identifies and maps areas to focus local conservation investments to meet regional conservation goals. Final Results of the Optimization of Ecological and Socioeconomic Goals (https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/wholes-ystems/greatlakes/coasts/wle/Pages/default.aspx) Conducting a baseline survey of the existing habitat against which to establish a Great Lakes Basin Ecosystem target of net habitat gain and measure future progress A draft report titled Conducting A Baseline Survey of Great Lakes Habitat: Assessing and Measuring Progress toward a Great Lakes Ecosystem Target of Net Habitat Gain was released in May 2016, identifying an approach to measure baseline conditions of habitat and monitor change over time. The report was developed with support from experts and partners around the lakes through a series of binational workshops, meetings and webinars. The Baseline Survey approach is built upon existing Great Lakes monitoring programs and emphasizes the use of remotely sensed information for maximum data coverage. The physical characteristics of the lakes will be used to map different habitat types and the condition of the habitats will then be assessed. The baseline survey will be conducted on a reoccurring basis to track changes in the ecosystem over time and to monitor progress. #### **DOMESTIC ACTIONS TAKEN** • Canada has multiple existing federal and provincial programs which contribute to the ongoing goals of the Habitats and Species Annex, including programs run by Parks Canada, Environment and Climate Change Canada's Wildlife Service, Fisheries and Oceans Canada, and the Ontario Ministry of Natural Resources and Forestry. In addition, there are many non-governmental partners making significant contributions to habitat and species conservation, including the Nature Conservancy of Canada, Conservation Ontario and the many individual Conservation Authorities in the province, the Ontario Federation of Anglers and Hunters, Ducks Unlimited, and Stewardship Councils. • In the United States, multiple federal and state agencies, as well as local and regional conservation entities, non-governmental organizations, and myriad conservation partners conduct a wide range of activities related to fish, wildlife and habitat. Many of these activities support goals and priorities of the Habitats and Species Annex. In addition to base-funded activities conducted by federal agencies, the Great Lakes Restoration Initiative (GLRI) has boosted funding in recent years to supplement agency budgets to allow them to pursue high priority conservation and restoration needs throughout the Great Lakes Basin, including fish and wildlife habitat. - In 2015, GLRI agencies and their partners implemented 57 habitat and species projects resulting in more than 875 habitat and species projects underway or completed since the 2010 inception of the GLRI. Ten 2015 GLRI projects were directed towards protecting, restoring, and enhancing Piping Plover habitats. Over 40 projects have improved conditions for numerous federally and nonfederally listed species in the Great Lakes such as Lake Sturgeon. - GLRI funding implemented protection, restoration and enhancement projects that have reopened over 3,800 miles of Great Lakes tributaries, and increased aquatic connectivity for numerous fish species. Additionally, more than 36,000 acres of habitat in targeted
watersheds were protected, restored and enhanced in order to sustain Great Lakes habitats and species populations. 300 miles of Great Lakes shoreline and riparian corridors, and 7,000 acres of Great Lakes coastal wetlands were protected, restored, and enhanced in 2015 alone. - GLRI partners have completed the removal of the Cass River Dam during 2015. The dam at Frankenmuth, Michigan initially blocked the passage of fish to more than 1,700 miles of upstream spawning habitat on the Cass River and connecting tributaries since it was built in the 1850s. It is now placed with a rock ramp with a series of rock weirs to allow passage of fish species, such as walleye and lake sturgeon. Fourteen separate weirs and adjacent "resting pools" have been constructed over a span of approximately 350 feet to provide a roughly 3% grade for non-jumping targeted species. - In 2015, GLRI partners reconnected the previously isolated Ottawa National Wildlife Refuge wetlands to Crane Creek and Lake Erie in Ohio. For the first time since the 1940s, the reconnected wetlands now function as a productive spawning ground and nursery area. Less than one week after re-establishing connectivity, Longnose Gar were found spawning in one of the pools. Thirteen species of fish not previously found entered through the structure and actively use the reconnected wetlands. - The Fond du Lac Band of Lake Superior Chippewa developed better ways to control water levels and protect sustainable wild rice populations with GLRI funds. Projects included water control structures, beaver dam removals and channel obstruction removal that resulted in the protection of 855 acres of ecologically and culturally important wild rice habitat on the Fond du Lac Reservation in northeastern Minnesota. Federal partners and local Chippewa removed 97 acres of competing aquatic plan species from Big Rice Lake and 59 acres of aggressive perennial vegetation from Perch Lake. In the St. Louis River Estuary partners reseeded 121 acres with wild rice. During the 2015 GLRI fiscal year, federal agencies and their partners restored and protected a total of 1,132 acres of wild rice habitat in Fond du Lac waters. ## GROUNDWATER ANNEX PROGRESS REPORT OF THE PARTIES CHAPTER #### **OVERVIEW** The 2012 GLWQA recognizes the interconnection between groundwater and the Waters of the Great lakes. Clean groundwater can enhance surface water quality and provide a protective treatment or storage zone, however contaminated groundwater can act as a long-term source of pollutants and can adversely affect surface water quality. Understanding the extent of the impact that groundwater has on the chemical, physical and biological integrity of the Great Lakes is important for the long-term protection of the Great Lakes. Accordingly, under the 2012 GLWQA, Canada and the United States committed to coordinate scientific assessments of groundwater, in order to better understand how groundwater affects surface water quality and quantity, to coordinate groundwater management actions, and to protect and manage groundwater-related stresses affecting the waters of the Great Lakes. As a first step, Canada and the United States released a report on the relevant and available groundwater science in June, 2016. #### PROGRESS TOWARD MEETING GLWQA COMMITMENTS Release of the "Groundwater science relevant to the Great Lakes Water Quality Agreement: A status report". ~ 2016 ~ 2013 A range of Great Lakes groundwater issues examined to support the development of the Groundwater Science Report, including: groundwater-surface water interaction; contaminants and nutrients in groundwater; the role of groundwater in aquatic habitats; urban development and climate change impacts on groundwater. Groundwater Annex Subcommittee established. [Possibly include image of cover page of GW Science Report.] Figure x - Locations of monitoring wells in the Great Lakes basin with publicly available water quality analyses The implementation of this Annex is supported by the Groundwater Annex Subcommittee, co-led by Environment and Climate Canada and the United States Geological Survey. Organizations on the subcommittee include: #### BINATIONAL ACTIONS TAKEN FOR KEY COMMITMENTS ### By 2015, publish a report on the relevant and available groundwater science A report titled, Groundwater science relevant to the Great Lakes Water Quality Agreement: A status report, was finalized and made available on http://binational.net/2015/12/03/groundwater-science/ in June 2016. This report on the relevant and available Great Lakes groundwater science was developed through extensive collaboration among experts in a variety of subject areas from Canadian and United States federal departments, the Province of Ontario, state agencies (Michigan Office of the Great Lakes, Ohio Environmental Protection Agency, Wisconsin Department of Natural Resources), Conservation Authorities, universities, and others. The report takes into account public comments received from December, 2015 to the end of January, 2016. • The report provides the current state of science on groundwater and its relation to Great Lakes water quality by examining various issues such as: 1) the importance of groundwater-surface water interaction and interconnection; 2) contaminants and excessive nutrients in groundwater; 3) the influence of groundwater in providing aquatic habitats with a focus on Great Lakes nearshore areas, streams, and wetlands; and 4) the influence of urban development and climate change on groundwater quantity and quality. The Report also summarizes major science gaps and needs. This report provides a better basis and understanding of the issue of groundwater in the Great Lakes and its influence on the quality of the Waters of the Great Lakes; helps assess whether groundwater improves or adversely impacts Great Lakes water quality; and, supports future groundwater science and management actions. Identifying priorities for science activities and actions for groundwater management, protection, and remediation: and Coordinating binational groundwater activities under the GLWQA with domestic groundwater programs to assess, protect and manage groundwater impacting the Waters of the Great Lakes. - Information from the Groundwater Science Report, including the science gaps and needs, will be used to draft the 2017-2019 Binational Groundwater Priorities for Science and Action, which will be presented for public input at the Great Lakes Public Forum in October, 2016. - Discussions with other Annex Subcommittees will soon be undertaken to inform these 2017-2019 Binational Priorities; to determine if there needs to be a focus on coordinating specific binational groundwater activities; and to determine the need for surveillance of groundwater quality for priority areas. - Canada and the United States, supported by a binational group of groundwater scientists, have initiated the development of a State of the Great Lakes Groundwater Indicator. Currently, nitrate and chloride data from groundwater monitoring networks in the Great Lakes basin are being examined to assess the overall environmental status of groundwater quality and help measure progress towards the 2012 GLWQA's Article 3, General Objective (viii), "be free from the harmful impact of contaminated groundwater." #### **DOMESTIC ACTIONS TAKEN** Assessing information gaps and science needs related to groundwater to protect the quality of Waters of the Great Lakes. • In March 2015, the Ontario Geological Survey and Geological Survey of Canada hosted a Groundwater Geoscience Knowledge GAP Analysis session for southern Ontario clients. Session participants identified 30 individual groundwater geoscience knowledge gaps which fell into seven categories including: i) communications, ii) standards and protocols, iii) water quality and geochemistry, iv) surface and groundwater interaction, v) geology and hydrogeology, vi) climate change and vii) data management and dissemination. Further information can be found at www.nrcan.gc.ca (http://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R = 297736). Identifying groundwater impacts on the chemical, physical and biological integrity of the Waters of the Great Lakes. - The Ontario Geological Survey continues to develop an improved understanding of provincial groundwater resources that establishes the data and information needed to assess the impacts of groundwater on the Waters of the Great Lakes. In particular, the ambient groundwater geochemistry project has created a water quality database that is being evaluated for potential use in the development of a groundwater indicator under the guidance of the Science Annex Subcommittee. - Environment and Climate Change Canada is currently assessing the role of groundwater as a source of nutrients (phosphorus and reactive nitrogen) to surface waters of Southeastern Georgian Bay and the Nottawasaga River. This work is being supported by the Lake Simcoe / Southeastern Georgian Bay Clean-up Fund. Identifying groundwater impacts on the chemical, physical and biological integrity of the Waters of the Great Lakes. - The United States Geological Survey is continuing studies of selected areas of the Great Lakes Basin to evaluate the effects of land use and flow path on groundwater quality which, in turn, impact the Waters of the Great Lakes as groundwater interacts with surface water. - The State of Michigan has developed a water withdrawal assessment tool that evaluates the effect of large water withdrawals, including groundwater, on fish habitat in streams. The assessment tool has been used in Michigan for several years and is being evaluated by a few other Great Lakes states for possible implementation.
Understanding the effects of groundwater withdrawal on stream habitat is an important consideration under the 2012 GLWQA. • Researchers at Ohio State University have recently begun a project titled, Quantifying the effects of surface water-groundwater interaction on dissolved phosphorus loads to Lake Erie. The results of this research should help clarify the potential for groundwater discharge to streams and lakes adding to already identified surface water sources of phosphorus. ## CLIMATE CHANGE IMPACTS ANNEX PROGRESS REPORT OF THE PARTIES CHAPTER #### **OVERVIEW** Climate change impacts such as warming temperatures, changing precipitation patterns, decreased ice coverage, and alterations to water levels are being observed right across the Great Lakes basin. Climate change may also impact physical, chemical and biological processes (such as runoff and erosion patterns, nutrient cycling, and wetland development) in the Great Lakes, and these impacts are less well understood. It is important to understand how climate change will affect these processes in order to allow us to make more informed management decisions for the Great Lakes. Recognizing that climate change has an impact on the quality of waters of the Great Lakes, Canada and the United States incorporated a new annex in the 2012 GLWQA to address this issue, through which both governments commit to coordinate efforts to identify, quantify, understand, and predict the climate change impacts on the water quality of the Great Lakes and to share information broadly with Great Lakes resource managers to proactively address those impacts. #### PROGRESS TOWARD MEETING GLWQA COMMITMENTS Climate Change Impacts Annex Subcommittee established. The first binational "Great Lakes Quarterly Climate Summary" issued. 2014 2013 Climate change webinars held with other Annex Co-Leads and Subcommittees to initiating dialogue of potential climate change impacts. This Annex's implementation is supported by the Climate Change Impacts Annex Subcommittee, co-led by Environment and Climate Change Canada and the National Oceanic and Atmospheric Administration. Organizations on the subcommittee include: [Confirm following Subcommittee membership with Co-Leads: Environment and Climate Change Canada, Ontario Ministry of Environment and Climate Change, Ontario Ministry of Natural Resources and Forestry, Conservation Ontario, United States National Oceanic and Atmospheric Administration, United States Environmental Protection Agency, United States Geological Survey, Oneida Tribe of Indians of Wisconsin, United States National Park Service, United States Fish and Wildlife Service, United States Army Corps of Engineers] #### BINATIONAL ACTIONS TAKEN FOR KEY COMMITMENTS Coordinating binational climate change science activities to quantify, understand, and share information that Great Lakes resource managers need to address climate change impacts on Great Lakes water quality. - In June 2013, Canada and the United States initiated the development of the first binational quarterly newsletter focusing on climate impacts and outlooks for the Great Lakes region. The Great Lakes Climate Quarterly newsletters (www.binational.net/category/a9/qcio-btsc) provide a quick and easy-to-understand binational overview of the latest season's weather and water level conditions, weather and water level-related impacts, and an outlook for the upcoming quarter. These newsletters are produced by Canadian and United States experts for use by managers and practitioners at federal, state, provincial, regional, and local scales as well as stakeholders and the general public. - A series of webinars were conducted in 2014 to present information on the best available peer-reviewed climate change science in the Great Lakes to Annex Subcommittees, as well as other interested parties such as the Council for Great Lakes Industries. Webinars were provided specifically to: 1) enhance broad understanding of climate information; 2) to discuss the type of climate change information required by other Annex Subcommittees to support their activities; 3) to help focus the work of the Climate Change Impacts Annex Subcommittee in providing more tailored climate change information. - In December 2015, a "State of Climate Change Science in the Great Lakes Basin: A Focus on Climatological, Hydrologic and Ecological Effects" report was released, which synthesizes the state of climate change impacts in the Great Lakes Basin and identifies key knowledge gaps. The Executive Summary and further information is available at [insert binational.net link]. The 2015 State of Climate Change Science in the Great Lakes Basin report, and the companion database of all the literature reviewed for the report, were developed by the Ontario Climate Consortium, the Ontario Ministry of Natural Resources and Forestry, and McMaster University, with support from Department of Fisheries and Oceans Canada and Environment and Climate Change Canada, and in consultation with Climate Change Impacts Annex Subcommittee. The report supports various commitments under the Climate Change Impacts Annex and will be used for further discussions with Annex Co-Leads and their Subcommittees and inform future work of the Climate Change Impacts Annex Subcommittee. Enhancing monitoring of relevant climate and Great Lakes variables to validate model predictions and to understand current climate change impacts. • A growing ensemble of in situ measurements – including offshore eddy flux towers, buoy-based sensors, and vessel-based platforms – are being deployed through an ongoing binational collaboration known as the Great Lakes Evaporation Network. The Network is helping to reduce uncertainties in the Great Lakes water balance, providing a more robust basis for short- and long-term projections of variations in climate and lake levels, and filling a significant gap in measurements, including evaporation and water temperatures, and related meteorological data. The Network is supported through a consortium of researchers from Environment and Climate Change Canada and the National Oceanic and Atmospheric Administration, the University of Michigan, Northern Michigan University, the University of Colorado, Limno-Tech and the Great Lakes Observing System. #### **DOMESTIC ACTIONS TAKEN** Developing and improving regional scale climate models to predict climate change in the Great Lakes Basin Ecosystem at appropriate temporal and spatial scales. Linking projected climate change outputs from regional models to chemical, physical, biological models that are specific to the Great Lakes to better understand and predict climate change impacts. - Canada continues to support the development of coupled atmospheric-land-ocean models for the Great Lakes-St. Lawrence River system that can be integrated with Regional Climate models to evaluate the hydrometeorological impacts of climate change. - The Ontario Government continues to support the development of high resolution regional climate projections in support of climate impact assessments on various sectors in Ontario and the Great Lakes basin. Projections are updated with the latest Coupled Model Intercomparison Project Phase 5 (CIMP5) data in 2015 and distributed through the following public climate data portals: http://ontarioCCDP.ca and http://ontarioCCDP.ca and http://occp.lamps.yorku.ca/. - A coordinated evaluation of the impacts of climate change on the levels and flows of the St. Lawrence River between 2041-2070 and 1971-1999 is being undertaken through a collaborative of agencies including Fisheries and Oceans Canada, Hydro-Quebec, Direction de l'expertise hydrique of Quebec, OURANOS and Environment and Climate Change Canada. Climate change will modify the flow of water into the St. Lawrence River (from Lake Ontario, the Ottawa River, and tributaries) and the level of the Great Lakes. These two factors will lead to changes in both the average and extreme levels in the St. Lawrence River. The anticipated impacts include erosion or deposition along the river banks, navigation impacts, and impacts to drinking water intakes. A major focus of this project is improving the analyses of the routing of Ottawa River flows so that Great Lakes and St. Lawrence River models can be linked. Enhancing monitoring of relevant climate and Great Lakes variables to validate model predictions and to understand current climate change impacts. • Environment and Climate Change Canada collects data from a network of approximately 1300 surface weather and climate observing sites across the country. These sites include weather stations owned by Environment and Climate Change Canada, NAV CANADA, National Defence, along with volunteer climate stations. The majority of these sites are automated observing platforms which report year round, 7 days a week, 24 hours a day. The Water Survey of Canada is the national authority responsible for the collection, interpretation and dissemination of standardized water resource data and information in Canada. In partnership with the Province of Ontario, the Water Survey of Canada operates approximately 440 active hydrometric gauges in the Canadian portion of the Great Lakes-St. Lawrence River Basin. Environment and Climate Change Canada supports the operation of three evaporation stations at Stannard Rock on Lake Superior, Long Point on Lake Erie and Simcoe Island on Lake Ontario as part of the Great Lakes Evaporation Network. • Multiple methods and estimates of Great Lakes runoff are now available from various federal agencies in Canada and the United States and a comprehensive evaluation and coordination of runoff estimates is necessary. The Great Lakes Runoff Inter-comparison Project is a binational collaboration aimed at assessing a variety of models
currently used (or that could readily be adapted) to simulate basin-scale runoff to the Great Lakes. The Great Lakes Runoff Inter-comparison Project for Lake Ontario was initiated by Environment and Climate Change Canada in 2013. The project compared different hydrologic models in their ability to estimate Lake Ontario's direct incoming runoff. The results highlight the different models' weaknesses and strengths, in order to assess which model to use as a function of the targeted application and experiment settings, with the more general goal to improve Lake Ontario's runoff simulation by identifying and fixing some of the model weaknesses. #### Developing and improving analytical tools to understand and predict climate change impacts. • The Canadian Precipitation Analysis is an operational near real-time gridded precipitation product from Environment and Climate Change Canada available since April 2011 for North America. The Canadian Precipitation Analysis is highly regarded due to its unique capability of capturing some of the precipitation features that are specific to the Great Lakes-St. Lawrence River region (including the effects that the lakes have on the precipitation patterns, something that is very difficult to discern with the existing precipitation gauging network). A project was initiated in 2015 to provide the foundation for extending the Canadian Precipitation Analysis back to 1983. #### Sharing information that Great Lakes resource managers need to address climate change impacts. Ontario is working to establish a climate change modeling collaborative for climate data that will establish a one-window source for climate data, for the purpose of ensuring open access to standardized and wide-ranging Ontario climate information. The modeling collaborative will help both public and private sectors make informed and evidence-based decisions regarding adapting to climate change and increasing resilience. Developing and improving regional scale climate models to predict climate change in the Great Lakes Basin Ecosystem. Linking the projected climate change outputs from the regional models to Great Lakes-specific chemical, physical, biological models. • The National Oceanic and Atmospheric Administration's Great Lakes Environmental Research Lab brought together several different modeling and observational approaches to study climate change in the Great Lakes basin. The modeling activity consisted of further development and application of three atmosphere-lake-land regional climate models: 1) the Coupled Hydrosphere-Atmosphere Research Model (CHARM); 2) the Regional Climate Model version 4 (RegCM4) at the University of Wisconsin; and 3) the Weather Research and Forecasting Model (WRF) at the University of Maryland, as well as the development and testing of a simulation of ice and lower trophic level ecology in the form of a nutrient-phytoplankton-zooplankton-detritus model component. Enhancing monitoring of relevant climate and Great Lakes variables to validate model predictions and to understand current climate change impacts. - In 2013, the Lake Superior National Estuarine Research Reserve established a new Sentinel Site located in Pokegama Bay, Lake Superior. With funding support from the National Oceanic and Atmospheric Administration, this Sentinel Site included weather/meteorological station, water quality sonde, surface elevation tables, permanent vegetation transects, geodetic vertical referencing benchmarks, and an acoustic doppler current profiler installation. This site is now recording monthly water quality sampling for nutrients and chlorophyll. The primary goal is to understand sediment movement and how sediment transfer is impacting nearshore marsh environments with increased frequency and intensity of storm events. - The National Oceanic and Atmospheric Administration's Great Lakes Environmental Research Lab has been exploring the relationships between ice cover, lake thermal structure, and regional climate for over 30 years through development, maintenance, and analysis of historical model simulations and observations of ice cover, surface water temperature, and other variables. Weekly ice cover imaging products produced by the Canadian Ice Service started in 1973. Beginning in 1989, the United States National Ice Center produced Great Lakes ice cover charts that combined both Canadian and United States agency satellite imagery. These products are available at the Great Lakes Environmental Research Lab through the Coastwatch program (www.coastwatch.glerl.noaa.gov), a nationwide National Oceanic and Atmospheric Administration program within which the Great Lakes Environmental Research Lab functions as the Great Lakes regional node. - Currently, there is year-round monitoring infrastructure dedicated to understanding off-shore processes that impact Great Lakes ecosystem health. Beginning in Fiscal Year 2015, the National Oceanic and Atmospheric Administration's Great Lakes Environmental Research Lab (with funding support from the National Oceanic and Atmospheric Administration's Coastal Storms Program) is seeking to fill known data gaps (i.e., over-water evaporation and transpiration rates and how those rates effect the overall water budget) through a two-phased approach. First, the team will deploy and manage data from vessel- and buoy-based sensors to improve understanding of overwater meteorology, evaporation, and water temperature in the Great Lakes. Second, the project will also focus on data analysis, system validation, and model assimilation to improve access to and understanding of the acquired data. #### Developing and improving analytical tools to understand and predict climate change impacts. - The National Oceanic and Atmospheric Administration's Office for Coastal Management developed and released the Lake Level Viewer (www.coast.noaa.gov/llv) for the United States portion of the Great Lakes basin in 2014. This tool helps users visualize lake level changes that range from six feet above to six feet below historical long-term average water levels in the Great Lakes, along with potential shoreline and coastal impacts. Communities can use this information to determine what preparations make the most sense in planning for water level change scenarios. Preparations might include zoning restrictions, infrastructure improvements, and habitat conservation. As a result of this work and product delivery, Digital Elevation Models for each lake basin and the associated topographic and bathymetric data are now available on The National Oceanic and Atmospheric Administration's Digital Coast (https://coast.noaa.gov/digitalcoast/). - The National Oceanic and Atmospheric Administration's Great Lakes Environmental Research Lab developed and released a basin wide Water Level Dashboard in 2014 (www.glerl.noaa.gov/data/dashboard/GLHCD.html). The Dashboard is a dynamic graphical interface for visualizing projected, measured, and reconstructed surface water elevations on the earth's largest lakes. This interface also reflects relationships between hydrology, climate, and water level fluctuations in the Great Lakes. Coordinating binational climate change science activities to quantify, understand, and share information that Great Lakes resource managers need to address climate change impacts. - The National Oceanic and Atmospheric Administration's National Center for Environmental Information produces an annual "State of the Climate" report (www.ncdc.noaa.gov/sotc). This report provides a collection of monthly summaries recapping climate-related occurrences on both a global and national scale. - The National Park Service released Climate Change Scenario Planning Workshop Summaries for two US national parks on Lake Superior. The Isle Royale National Park report (https://www.nps.gov/isro/learn/nature/upload/Using-Climate-Change-Scenarios-to-Explore-Management-at-ISRO.pdf) summarized a 2013 workshop and the Apostle Island National Lakeshore report (https://www.nps.gov/apis/learn/nature/upload/APIS-Scenario-Workshop-Report-20160104-FINAL.pdf) summarized a 2014 workshop, which built on the process and results of the earlier session. These two-day workshops were a collaboration between the National Park Service and the Great Lakes Integrated Sciences + Assessments team (http://glisa.umich.edu/) from the University of Michigan. The primary objectives of the sessions were to help National Park Service leadership at local and higher levels make management and planning decisions based on up to date climate science and assessments of future uncertainty. The sessions were also designed to (1) assess the effectiveness of using regional level climate science to craft local scenarios; and (2) to provide opportunities for participants to better understand how climate scenarios can be used. ## Possible graphics: Sources: GL Climate Outlook - Fall 2015 Sept-Nov 2015 Air Temp: Departure from Normal Sept-Nov 2015 Precip: Percent of Normal (%) ## Lake Level Outlook Potential range for water levels for Jan-Mar 2016 compared to the long-term average (1918-2014). ## SCIENCE ANNEX PROGRESS REPORT OF THE PARTIES CHAPTER #### **OVERVIEW** Science provides the foundation for, and is fundamental to, supporting the necessary and appropriate management actions and policy decisions in support of meeting the objectives of the Agreement. The 2012 GLWQA recognizes that the effective implementation of management decisions, policies and programs needs to be based on the best available science, research and knowledge. Throughout the 2012 GLWQA, specific science-based commitments are captured in various Annexes. The Science Annex of the 2012 GLWQA commits Canada and the United States to enhancing the coordination,
integration, synthesis, and assessment of science activities across all Annexes of the Agreement. #### PROGRESS TOWARD MEETING GLWQA COMMITMENTS Cooperative Science and Monitoring Initiative (CSMI) rotational cycle and reporting guidelines established. Draft assessments for Indicators and General Objectives developed. Science Annex Subcommittee established. This Annex's implementation is supported by the Science Annex Subcommittee, co-led by Environment and Climate Change Canada and the United States Environmental Protection Agency. Organizations on the subcommittee include: [Confirm following Subcommittee membership with Co-Leads: Environment and Climate Change Canada, Fisheries and Oceans Canada, Agriculture and Agri-Food Canada, Natural Resources Canada, Ontario Ministry of Environment and Climate Change, Ontario Ministry of Natural Resources and Forestry, Conservation Ontario, United States Environmental Protection Agency, United States National Oceanic and Atmospheric Administration, United States Army Corps of Engineers, United States Geological Survey, Wisconsin Department of Natural Resources] #### BINATIONAL ACTIONS TAKEN FOR KEY COMMITMENTS Establishing and maintaining comprehensive, science-based ecosystem indicators to assess the state of the Great Lakes, to anticipate emerging threats, and to measure progress in relation to achievement of the Objectives of the Agreement. In 2016, issue a State of the Great Lakes Report describing basin-wide environmental trends and lakespecific conditions using ecosystem indicators. - In January of 2015, Canada and the United States confirmed the suite of indicators for use in assessing the ecosystem conditions of the Great Lakes. This suite was established based on Great Lakes indicator work (previously known as SOLEC) that began in 1994. - The indicator suite includes nine indicators, one for each of the General Objectives of the 2012 GLWQA. The nine indicators are supported by 43 sub-indicators [reference Figure]. - Over 100 Great Lakes experts have been engaged in reporting against these indicators, representing federal, provincial, state and local governments, as well as academia and non-governmental organizations. - In 2016, draft assessments for the indicators were developed and reviewed by subject matter experts for general concurrence before being presented at the Great Lakes Public Forum in October, 2016 for public comment. A final State of the Great Lakes report, describing basin-wide and lake-specific environmental trends and conditions using the ecosystem indicators, is targeted for release in 2017 [reference Figure]. | Indicators & Sub-Indicators | | | |--|-------------|-----------------------| | the Gr | eat Lakes | | | 1. Drinking Water | | | | 2. Beaches | | | | 3. Fish Consumption | | | | 4. Toxic Chemicals | | | | Toxic Chemical Concentrations (open water) | | | | Toxic Chemicals In Great Lakes Whole Fish | | | | Toxic Chemicals In Great Lakes Herring Gull Eggs Toxic Chemicals in Sediment | | | | Atmospheric Deposition of Toxic Chemicals | | | | Water Quality in Tributaries | | | | 5. Habitat & Species | | | | Coastal Wetland | • | Phytoplankton (open | | Invertebrates | water) | <i>y</i> . (1 | | Coastal Wetland Fish | •
water) | Zooplankton (open | | Coastal Wetland Plants | • | Benthos (open water) | | Coastal Wetland | • | Diporeia (open water) | | Amphibians | | | | Coastal Wetland Birds | • | Preyfish (open water) | | Coastal Wetlands: Extent and Composition | • | Lake Trout | | Aquatic Habitat | | Walleye | | Connectivity | | | | Fish Eating and Colonial | • | Lake Sturgeon | | Nesting Waterbirds | | | | 6. Nutrients & Algae | | | | Nutrients in Lakes (open water) | | | | Harmful Algal Blooms Cladophora | | | | 7. Invasive Species | | | | Aguatic Invasive Species | | | | Sea Lamprey | | | | Dreissenid Mussels | | | | Terrestrial Invasive Species | | | | 8. Groundwater | | | | 9. Watershed & Climate Impac | ts | | | Water Levels | • | Forest Cover | | Surface Water Tomporature | • | Land Cover | | Temperature • Ice Cover | | Tributary Flashiness | | Precipitation Events | • | Hardened Shorelines | | Baseflow due to | • | Human Populations | | Groundwater | | · | | Watershed Stressors | | | ## State of the Great Lakes Report timeline Implementing a cooperative science and monitoring initiative for each of the Great Lakes on a fiveyear rotational basis. The Cooperative Science and Monitoring Initiative (CSMI) was developed under the 1987 GLWQA in order to binationally coordinate science to provide information to support Great Lakes decisionmaking. Monitoring and research activities in the Great Lakes basin are coordinated with an emphasis on enhanced monitoring and research field activities on one of the Great Lakes per year, on a five year rotating cycle [reference figure]. # Rotational Cycle - For the 2012 GLWQA, Canada and the United States established the following multi-step CSMI process for each Great Lake: 1) identification of science and monitoring needs; 2) planning; 3) coordinated monitoring (field years); 4) laboratory analysis; 5) data analysis and reporting; and, 6) final report and communicating out. - Examples of lake-specific cooperative science include: - An assessment in Lake Ontario, in 2013, of the lower food web and projects across federal and state agencies addressing nutrient loadings and nearshore to offshore movement of nutrients; - An assessment in Lake Erie, in 2014, of Dreissenid mussel populations, nutrient loadings from rivers and western basin sediments and a phosphorus mass balance model for the western and central basin; - Undertaking projects in Lake Michigan, in 2015, to address nutrient and contaminant loads to the lake, to [address?] contaminants in the lake, and to investigate the movement of nutrients and energy from nearshore to offshore supporting fisheries. - An assessment in Lake Superior, in 2016, of chemical emission reduction actions, and a determination of the health of the lower food web and important fish communities. ### [Possible images to use. Ensure have rights to use.] Source: https://rvlakeguardian.wordpress.com/2014/07/29/whats-living-along-the-bottom-of-lake-erie/ Source: https://www.ec.gc.ca/grandslacs-greatlakes/default.asp?lang=En&n=F9A91157-1&printfullpage=true Recommend pictures of both the US Guardian and the Canadian Limnos to balance and demonstrate collaboration – need rights to use images. [Develop something similar that is recent] Source: http://lakeerie.ohio.gov/GLRI/CSMI.aspx Facilitating information management and sharing to improve knowledge, accessibility and exchange of relevant Great Lakes information. • Data and information management and sharing efforts to support implementation of relevant 2012 GLWQA commitments are being examined. An initial examination was undertaken to understand the data and information management and sharing needs across all of the Annexes of the GLWQA. Based on this information and discussions at the Great Lakes Executive Committee meetings, the Science Annex Subcommittee will be examining existing Great Lakes-related distributed data and information access systems and platforms and their application to a specific pilot project on a priority area such as the Lake Erie phosphorus and/or nearshore issue. Identifying science priorities, taking into account recommendations of the International Joint Commission. Undertaking a review of available scientific information to inform management actions and policy development. - The Science Annex Subcommittee coordinated and assisted in the development of the 2014-2016 binational priorities for science amongst the other Annexes. As called for in Article 5 of the 2012 GLWQA, these priorities, along with the priorities for action, were posted onto binational.net (www.binational.net/2014/03/20/psa-pasa-2014) in March 2014. - In support of the development of nutrient objectives for controlling nuisance *Cladophora* in the Great Lakes, Canada and the United States held a binational workshop on January 28-26, 2016 to determine the state of knowledge of *Cladophora* from the perspectives of the entire Great Lakes basin, from that of individual lakes, and with respect to areas within each lake where *Cladophora* is perceived to be a significant local problem. The findings of the workshop will help guide a strategy for proposing nutrient reduction targets that will control *Cladophora*. #### **DOMESTIC ACTIONS TAKEN** Identifying science priorities, taking into account recommendations of the International Joint Commission. - In March 2013, a Canadian workshop was organized to support identifying possible science priorities that Canada could put forward for first three years under the 2012 GLWQA, pursuant to the development of the binational priorities for science called for in Article 5 of the 2012 GLWQA. - Within Environment and Climate Change Canada, two Great Lakes Science Days have been held in an effort to share information on priorities, progress and emerging issues, and also to encourage continued collaboration between Great Lakes scientists, researchers and program teams within the department. [Placeholder for input from EPA]